Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157265 by MathSh last updated on 21/Oct/21

Solve for real numbers:  sin(x) + cos(x) + sec(x)∙csc(x)=2+(√2)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\:+\:\mathrm{cos}\left(\mathrm{x}\right)\:+\:\mathrm{sec}\left(\mathrm{x}\right)\centerdot\mathrm{csc}\left(\mathrm{x}\right)=\mathrm{2}+\sqrt{\mathrm{2}} \\ $$

Answered by TheSupreme last updated on 21/Oct/21

sin(x)+cos(x)−(1/(sin(x)cos(x)))=A  ±s(√(1−s^2 ))−(±(1/(s(√(1−s^2 )))))=A  s^2 (√(1−s^2 ))+s−s^3 =±As(√(1−s^2 ))  (s^2 −(±As))(√(1−s^2 ))=s^3 −s  s≠0  (s−(±A))(√(1−s^2 ))=s^2 −1  (s−(±A))=−(√(1−s^2 ))  s^2 +A^2 −(±2sA)=1−s^2   2s^2 −(±2sA)+A^2 −1=0  s_(1,2) =((2A±(√(4A^2 +8A^2 )))/4)=A((1±(√3))/2) (a)  s_(1,2) =A((−1±(√3))/2)  ...   s≤1  s_1 =(2+(√2))(((1−(√3))/2)) (a)  cos=(√(1−s^2 ))  s_2 =(2+(√2))(((−1+(√3))/2)) (b)  cos=−(√(1−s^2 ))

$${sin}\left({x}\right)+{cos}\left({x}\right)−\frac{\mathrm{1}}{{sin}\left({x}\right){cos}\left({x}\right)}={A} \\ $$$$\pm{s}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }−\left(\pm\frac{\mathrm{1}}{{s}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }}\right)={A} \\ $$$${s}^{\mathrm{2}} \sqrt{\mathrm{1}−{s}^{\mathrm{2}} }+{s}−{s}^{\mathrm{3}} =\pm{As}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} } \\ $$$$\left({s}^{\mathrm{2}} −\left(\pm{As}\right)\right)\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }={s}^{\mathrm{3}} −{s} \\ $$$${s}\neq\mathrm{0} \\ $$$$\left({s}−\left(\pm{A}\right)\right)\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }={s}^{\mathrm{2}} −\mathrm{1} \\ $$$$\left({s}−\left(\pm{A}\right)\right)=−\sqrt{\mathrm{1}−{s}^{\mathrm{2}} } \\ $$$${s}^{\mathrm{2}} +{A}^{\mathrm{2}} −\left(\pm\mathrm{2}{sA}\right)=\mathrm{1}−{s}^{\mathrm{2}} \\ $$$$\mathrm{2}{s}^{\mathrm{2}} −\left(\pm\mathrm{2}{sA}\right)+{A}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$${s}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{2}{A}\pm\sqrt{\mathrm{4}{A}^{\mathrm{2}} +\mathrm{8}{A}^{\mathrm{2}} }}{\mathrm{4}}={A}\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}}{\mathrm{2}}\:\left({a}\right) \\ $$$${s}_{\mathrm{1},\mathrm{2}} ={A}\frac{−\mathrm{1}\pm\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$...\: \\ $$$${s}\leqslant\mathrm{1} \\ $$$${s}_{\mathrm{1}} =\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:\left({a}\right) \\ $$$${cos}=\sqrt{\mathrm{1}−{s}^{\mathrm{2}} } \\ $$$${s}_{\mathrm{2}} =\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\left(\frac{−\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:\left({b}\right) \\ $$$${cos}=−\sqrt{\mathrm{1}−{s}^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com