Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 179449 by Shrinava last updated on 29/Oct/22

Solve for real numbers:  3sinx + 4(y + cosx) = y^2  + 9

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{3sinx}\:+\:\mathrm{4}\left(\mathrm{y}\:+\:\mathrm{cosx}\right)\:=\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{9} \\ $$

Answered by mr W last updated on 29/Oct/22

3 sin x+4 cos x−5=y^2 −4y+4  5[sin (x+α)−1]=(y−2)^2   since sin (x+α)≤1, LHS ≤0.  but RHS≥0, therefore  LHS=RHS=0  ⇒sin (x+α)=1 ⇒x=2kπ+(π/2)−tan^(−1) (4/3)  ⇒y=2

$$\mathrm{3}\:\mathrm{sin}\:{x}+\mathrm{4}\:\mathrm{cos}\:{x}−\mathrm{5}={y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{4} \\ $$$$\mathrm{5}\left[\mathrm{sin}\:\left({x}+\alpha\right)−\mathrm{1}\right]=\left({y}−\mathrm{2}\right)^{\mathrm{2}} \\ $$$${since}\:\mathrm{sin}\:\left({x}+\alpha\right)\leqslant\mathrm{1},\:{LHS}\:\leqslant\mathrm{0}. \\ $$$${but}\:{RHS}\geqslant\mathrm{0},\:{therefore} \\ $$$${LHS}={RHS}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\left({x}+\alpha\right)=\mathrm{1}\:\Rightarrow{x}=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow{y}=\mathrm{2} \\ $$

Commented by Shrinava last updated on 01/Nov/22

cool dear professor thank you

$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Answered by manxsol last updated on 29/Oct/22

3sinx+4cosx=y^2 −4y+9  (3/5)sinx+(4/5)cosx=((y^2 −4y+9)/5)  sin(x+θ)=((y^2 −4y+9)/5)   θ=arsen(3/5)  −1≤((y^2 −4y+9)/5)≤1  −5≤y^2 −4y+9 Λ^�  y^2 −4y+9≤5  0≤y^2 −4y+14   Δ=16−56       Δ<0⇒y^2 −4y+14 ⟩0   ∀y>  y^2 −4y+9≤5  y^2 −4y+4≤0  (y−2)^2 ≤0  solution y=2     sin(x+θ)=((2^2 −4(2)+9)/5)=1  x+θ=(π/2)+2kπ  x=((π/2)−arcsin((3/5)))+2kπ

$$\mathrm{3}{sinx}+\mathrm{4}{cosx}={y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{9} \\ $$$$\frac{\mathrm{3}}{\mathrm{5}}{sinx}+\frac{\mathrm{4}}{\mathrm{5}}{cosx}=\frac{{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{9}}{\mathrm{5}} \\ $$$${sin}\left({x}+\theta\right)=\frac{{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{9}}{\mathrm{5}}\: \\ $$$$\theta={arsen}\left(\mathrm{3}/\mathrm{5}\right) \\ $$$$−\mathrm{1}\leqslant\frac{{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{9}}{\mathrm{5}}\leqslant\mathrm{1} \\ $$$$−\mathrm{5}\leqslant{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{9}\:\hat {\Lambda}\:{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{9}\leqslant\mathrm{5} \\ $$$$\mathrm{0}\leqslant{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{14}\:\:\:\Delta=\mathrm{16}−\mathrm{56} \\ $$$$\:\:\:\:\:\Delta<\mathrm{0}\Rightarrow{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{14}\:\rangle\mathrm{0}\:\:\:\forall{y}> \\ $$$${y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{9}\leqslant\mathrm{5} \\ $$$${y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{4}\leqslant\mathrm{0} \\ $$$$\left({y}−\mathrm{2}\right)^{\mathrm{2}} \leqslant\mathrm{0} \\ $$$${solution}\:{y}=\mathrm{2}\:\:\: \\ $$$${sin}\left({x}+\theta\right)=\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{2}\right)+\mathrm{9}}{\mathrm{5}}=\mathrm{1} \\ $$$${x}+\theta=\frac{\pi}{\mathrm{2}}+\mathrm{2}{k}\pi \\ $$$${x}=\left(\frac{\pi}{\mathrm{2}}−{arcsin}\left(\frac{\mathrm{3}}{\mathrm{5}}\right)\right)+\mathrm{2}{k}\pi \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Shrinava last updated on 01/Nov/22

cool dear professor thank you

$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com