Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 156502 by MathSh last updated on 11/Oct/21

Solve for integers:  (x^2  + y^2 )(x^4  + y^4 ) = (x + y)^6

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{integers}: \\ $$$$\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{4}} \right)\:=\:\left(\mathrm{x}\:+\:\mathrm{y}\right)^{\mathrm{6}} \\ $$$$ \\ $$

Answered by Rasheed.Sindhi last updated on 12/Oct/21

  (x+y)^6 −(x^4 +y^4 )(x^2 +y^2 )=0  6 x^5 y + 14 x^4 y^2  + 20 x^3 y^3 + 14 x^2 y^4 + 6 x y^5 =0  xy(6x^4 +14x^3 y+20x^2 y^2 +14xy^3 +6y^4 )=0  x=0∣y=0∣6x^4 +14x^3 y+20x^2 y^2 +14xy^3 +6y^4 =0  6x^4 +14x^3 y+20x^2 y^2 +14xy^3 +6y^4 =0  2(x^2 +xy+y^2 )(3x^2 +4xy+3y^2 )=0  x^2 +xy+y^2 =0_(x=0,y=0_(only integer solution) )  ∣ 3x^2 +4xy+3y^2 _(x=0,y=0_(only integer solution) ) =0  Other solutions are complex:  ^•  x=((−y±(√(y^2 −4y^2 )))/2)=((−y±(√(−3y^2 )))/2)                     =((−y±iy(√3))/2)∉Z   ^• x=((−4y±(√(16y^2 −36y^2 )))/6)∉Z  x=0,y=0

$$ \\ $$$$\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{6}} −\left(\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} \right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{6}\:\mathrm{x}^{\mathrm{5}} \mathrm{y}\:+\:\mathrm{14}\:\mathrm{x}^{\mathrm{4}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{20}\:\mathrm{x}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} +\:\mathrm{14}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{4}} +\:\mathrm{6}\:\mathrm{x}\:\mathrm{y}^{\mathrm{5}} =\mathrm{0} \\ $$$$\mathrm{xy}\left(\mathrm{6x}^{\mathrm{4}} +\mathrm{14x}^{\mathrm{3}} \mathrm{y}+\mathrm{20x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{14xy}^{\mathrm{3}} +\mathrm{6y}^{\mathrm{4}} \right)=\mathrm{0} \\ $$$$\mathrm{x}=\mathrm{0}\mid\mathrm{y}=\mathrm{0}\mid\mathrm{6x}^{\mathrm{4}} +\mathrm{14x}^{\mathrm{3}} \mathrm{y}+\mathrm{20x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{14xy}^{\mathrm{3}} +\mathrm{6y}^{\mathrm{4}} =\mathrm{0} \\ $$$$\mathrm{6x}^{\mathrm{4}} +\mathrm{14x}^{\mathrm{3}} \mathrm{y}+\mathrm{20x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{14xy}^{\mathrm{3}} +\mathrm{6y}^{\mathrm{4}} =\mathrm{0} \\ $$$$\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{3x}^{\mathrm{2}} +\mathrm{4xy}+\mathrm{3y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\underset{\underset{\mathrm{only}\:\mathrm{integer}\:\mathrm{solution}} {\mathrm{x}=\mathrm{0},\mathrm{y}=\mathrm{0}}} {\mathrm{x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{y}^{\mathrm{2}} =\mathrm{0}}\:\mid\:\underset{\underset{\mathrm{only}\:\mathrm{integer}\:\mathrm{solution}} {\mathrm{x}=\mathrm{0},\mathrm{y}=\mathrm{0}}} {\mathrm{3x}^{\mathrm{2}} +\mathrm{4xy}+\mathrm{3y}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{Other}\:\mathrm{solutions}\:\mathrm{are}\:\mathrm{complex}: \\ $$$$\:^{\bullet} \:\mathrm{x}=\frac{−\mathrm{y}\pm\sqrt{\mathrm{y}^{\mathrm{2}} −\mathrm{4y}^{\mathrm{2}} }}{\mathrm{2}}=\frac{−\mathrm{y}\pm\sqrt{−\mathrm{3y}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{−\mathrm{y}\pm\mathrm{iy}\sqrt{\mathrm{3}}}{\mathrm{2}}\notin\mathbb{Z}\: \\ $$$$\:^{\bullet} \mathrm{x}=\frac{−\mathrm{4y}\pm\sqrt{\mathrm{16y}^{\mathrm{2}} −\mathrm{36y}^{\mathrm{2}} }}{\mathrm{6}}\notin\mathbb{Z} \\ $$$$\mathrm{x}=\mathrm{0},\mathrm{y}=\mathrm{0} \\ $$

Commented by MathSh last updated on 12/Oct/21

Very nice dear Ser, thank you

$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com