Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 183038 by Mastermind last updated on 18/Dec/22

Solve  (dy/dx)+xy=x^2     M.m

$$\mathrm{Solve} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{xy}=\mathrm{x}^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Answered by TheSupreme last updated on 21/Dec/22

D(ye^(x^2 /2) )=x^2 e^(x^2 /2)   y e^(x^2 /2) =∫x^2 e^(x^2 /2) dx=(1/2)xe^(x^2 /2) −(1/2)∫e^(x^2 /2) dx  y=(1/2)x−(1/2)(√π)erfi(x)e^(−(x^2 /2)) +c

$${D}\left({ye}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \right)={x}^{\mathrm{2}} {e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$${y}\:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} =\int{x}^{\mathrm{2}} {e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx}=\frac{\mathrm{1}}{\mathrm{2}}{xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} −\frac{\mathrm{1}}{\mathrm{2}}\int{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}{x}−\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\pi}{erfi}\left({x}\right){e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} +{c} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com