Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42012 by rahul 19 last updated on 16/Aug/18

Solve :  (du/dt) = ((3u−7t)/(−7u+3t))

$$\mathrm{Solve}\:: \\ $$$$\frac{{d}\mathrm{u}}{{d}\mathrm{t}}\:=\:\frac{\mathrm{3u}−\mathrm{7t}}{−\mathrm{7u}+\mathrm{3t}} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Aug/18

method 1  this method for homogeneous equation  put v=(y/x)   here i have put y=(u/t)    (du/dt)=((3((u/t))−7)/(−7((u/t))+3))  y=(u/t)   u=yt  (du/dt)=y+t(dy/dt)  y+t(dy/dt)=((3y−7)/(−7y+3))  t(dy/dt)=((3y−7)/(−7y+3))−y  t(dy/dt)=((3y−7+7y^2 −3y)/(−7y+3))  ((−7y+3)/(7y^2 −7))dy=(dt/t)  −((ydy)/(y^2 −1))+((3dy)/(7y^2 −7))=(dt/t)  (3/(14))∫(((y+1)−(y−1))/((y+1)(y−1)))dy−(1/2)∫((d(y^2 −1))/(y^2 −1))=∫(dt/t)  (3/(14))ln∣(((y−1)/(y+1)))∣−(1/2)ln(y^2 −1)=lnt+lnc  ln{(((y−1)/(y+1)))^(3/(14)) }−ln(y^2 −1)^(1/2) =ln(tc)  ln{(((y−1)/(y+1))))^(3/(14)) ×(1/((y^2 −1)^(1/2) ))}=lntc  (((y−1)^((3/(14))−(1/2)) )/((y+1)^((3/(14))+(1/2)) )).=tc  (((y−1)^((3−7)/(14)) )/((y+1)^((10)/(14)) ))=tc  (((y−1)^((−4)/(14)) )/((y+1)^((10)/(14)) ))=tc  ((((u/t)−1)^((−4)/(14)) )/(((u/t)+1)^((10)/(14)) ))=tc

$${method}\:\mathrm{1} \\ $$$${this}\:{method}\:{for}\:{homogeneous}\:{equation} \\ $$$${put}\:{v}=\frac{{y}}{{x}}\:\:\:{here}\:{i}\:{have}\:{put}\:{y}=\frac{{u}}{{t}} \\ $$$$ \\ $$$$\frac{{du}}{{dt}}=\frac{\mathrm{3}\left(\frac{{u}}{{t}}\right)−\mathrm{7}}{−\mathrm{7}\left(\frac{{u}}{{t}}\right)+\mathrm{3}} \\ $$$${y}=\frac{{u}}{{t}}\:\:\:{u}={yt} \\ $$$$\frac{{du}}{{dt}}={y}+{t}\frac{{dy}}{{dt}} \\ $$$${y}+{t}\frac{{dy}}{{dt}}=\frac{\mathrm{3}{y}−\mathrm{7}}{−\mathrm{7}{y}+\mathrm{3}} \\ $$$${t}\frac{{dy}}{{dt}}=\frac{\mathrm{3}{y}−\mathrm{7}}{−\mathrm{7}{y}+\mathrm{3}}−{y} \\ $$$${t}\frac{{dy}}{{dt}}=\frac{\mathrm{3}{y}−\mathrm{7}+\mathrm{7}{y}^{\mathrm{2}} −\mathrm{3}{y}}{−\mathrm{7}{y}+\mathrm{3}} \\ $$$$\frac{−\mathrm{7}{y}+\mathrm{3}}{\mathrm{7}{y}^{\mathrm{2}} −\mathrm{7}}{dy}=\frac{{dt}}{{t}} \\ $$$$−\frac{{ydy}}{{y}^{\mathrm{2}} −\mathrm{1}}+\frac{\mathrm{3}{dy}}{\mathrm{7}{y}^{\mathrm{2}} −\mathrm{7}}=\frac{{dt}}{{t}} \\ $$$$\frac{\mathrm{3}}{\mathrm{14}}\int\frac{\left({y}+\mathrm{1}\right)−\left({y}−\mathrm{1}\right)}{\left({y}+\mathrm{1}\right)\left({y}−\mathrm{1}\right)}{dy}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({y}^{\mathrm{2}} −\mathrm{1}\right)}{{y}^{\mathrm{2}} −\mathrm{1}}=\int\frac{{dt}}{{t}} \\ $$$$\frac{\mathrm{3}}{\mathrm{14}}{ln}\mid\left(\frac{{y}−\mathrm{1}}{{y}+\mathrm{1}}\right)\mid−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({y}^{\mathrm{2}} −\mathrm{1}\right)={lnt}+{lnc} \\ $$$${ln}\left\{\left(\frac{{y}−\mathrm{1}}{{y}+\mathrm{1}}\right)^{\frac{\mathrm{3}}{\mathrm{14}}} \right\}−{ln}\left({y}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ={ln}\left({tc}\right) \\ $$$${ln}\left\{\left(\frac{{y}−\mathrm{1}}{\left.{y}+\mathrm{1}\right)}\right)^{\frac{\mathrm{3}}{\mathrm{14}}} ×\frac{\mathrm{1}}{\left({y}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\right\}={lntc} \\ $$$$\frac{\left({y}−\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{14}}−\frac{\mathrm{1}}{\mathrm{2}}} }{\left({y}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{14}}+\frac{\mathrm{1}}{\mathrm{2}}} }.={tc} \\ $$$$\frac{\left({y}−\mathrm{1}\right)^{\frac{\mathrm{3}−\mathrm{7}}{\mathrm{14}}} }{\left({y}+\mathrm{1}\right)^{\frac{\mathrm{10}}{\mathrm{14}}} }={tc} \\ $$$$\frac{\left({y}−\mathrm{1}\right)^{\frac{−\mathrm{4}}{\mathrm{14}}} }{\left({y}+\mathrm{1}\right)^{\frac{\mathrm{10}}{\mathrm{14}}} }={tc} \\ $$$$\frac{\left(\frac{{u}}{{t}}−\mathrm{1}\right)^{\frac{−\mathrm{4}}{\mathrm{14}}} }{\left(\frac{{u}}{{t}}+\mathrm{1}\right)^{\frac{\mathrm{10}}{\mathrm{14}}} }={tc} \\ $$$$ \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Aug/18

method2  −7udu+3tdu=3udt−7tdt  3tdu−3udt=7udu−7tdt  3(((tdu−udt)/t^2 ))t^2  =(7/2){(du^2 )−(dt^2 )}  3t^2 d((u/t))=(7/2)d(u^2 −t^2 )  ((3t^2 d((u/t)))/(u^2 −t^2 ))=(7/2)×((d(u^2 −t^2 ))/(u^2 −t^2 ))  3((d((u/t)))/(((u^2 /t^2 ))−1))=(7/2)((d(u^2 −t^2 ))/(u^2 −t^2 ))  (3/2).∫((((u/t)+1)−((u/t)−1))/(((u/t)+1)((u/t)−1)))d((u/t))=(7/2)∫((d(u^2 −t^2 ))/(u^2 −t^2 ))  (3/2)ln∣((((u/t)−1)/((u/t)+1)))∣=(7/2)ln∣(u^2 −t^2 )∣+lnc

$${method}\mathrm{2} \\ $$$$−\mathrm{7}{udu}+\mathrm{3}{tdu}=\mathrm{3}{udt}−\mathrm{7}{tdt} \\ $$$$\mathrm{3}{tdu}−\mathrm{3}{udt}=\mathrm{7}{udu}−\mathrm{7}{tdt} \\ $$$$\mathrm{3}\left(\frac{{tdu}−{udt}}{{t}^{\mathrm{2}} }\right){t}^{\mathrm{2}} \:=\frac{\mathrm{7}}{\mathrm{2}}\left\{\left({du}^{\mathrm{2}} \right)−\left({dt}^{\mathrm{2}} \right)\right\} \\ $$$$\mathrm{3}{t}^{\mathrm{2}} {d}\left(\frac{{u}}{{t}}\right)=\frac{\mathrm{7}}{\mathrm{2}}{d}\left({u}^{\mathrm{2}} −{t}^{\mathrm{2}} \right) \\ $$$$\frac{\mathrm{3}{t}^{\mathrm{2}} {d}\left(\frac{{u}}{{t}}\right)}{{u}^{\mathrm{2}} −{t}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{2}}×\frac{{d}\left({u}^{\mathrm{2}} −{t}^{\mathrm{2}} \right)}{{u}^{\mathrm{2}} −{t}^{\mathrm{2}} } \\ $$$$\mathrm{3}\frac{{d}\left(\frac{{u}}{{t}}\right)}{\left(\frac{{u}^{\mathrm{2}} }{{t}^{\mathrm{2}} }\right)−\mathrm{1}}=\frac{\mathrm{7}}{\mathrm{2}}\frac{{d}\left({u}^{\mathrm{2}} −{t}^{\mathrm{2}} \right)}{{u}^{\mathrm{2}} −{t}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}.\int\frac{\left(\frac{{u}}{{t}}+\mathrm{1}\right)−\left(\frac{{u}}{{t}}−\mathrm{1}\right)}{\left(\frac{{u}}{{t}}+\mathrm{1}\right)\left(\frac{{u}}{{t}}−\mathrm{1}\right)}{d}\left(\frac{{u}}{{t}}\right)=\frac{\mathrm{7}}{\mathrm{2}}\int\frac{{d}\left({u}^{\mathrm{2}} −{t}^{\mathrm{2}} \right)}{{u}^{\mathrm{2}} −{t}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}{ln}\mid\left(\frac{\frac{{u}}{{t}}−\mathrm{1}}{\frac{{u}}{{t}}+\mathrm{1}}\right)\mid=\frac{\mathrm{7}}{\mathrm{2}}{ln}\mid\left({u}^{\mathrm{2}} −{t}^{\mathrm{2}} \right)\mid+{lnc} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by rahul 19 last updated on 17/Aug/18

thanks sir��

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Aug/18

its ok...

$${its}\:{ok}... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Aug/18

d(xy)=xdy+ydx  d(x^2 +y^2 )=2(xdx+ydy)  d((y/x))=((xdy−ydx)/x^2 )  d((x/y))=((ydx−xdy)/y^2 )  some times above fail then put  x=rcosα  y=rsinα  r^2 =x^2 +y^2     2rdr=2xdx+2ydy  rdr=xdx+ydy  tanα=(y/x)  sec^2 α(dα/dx)=((x(dy/dx)−y)/x^2 )  sec^2 αdα=((xdy−ydx)/x^2 )  use them

$${d}\left({xy}\right)={xdy}+{ydx} \\ $$$${d}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)=\mathrm{2}\left({xdx}+{ydy}\right) \\ $$$${d}\left(\frac{{y}}{{x}}\right)=\frac{{xdy}−{ydx}}{{x}^{\mathrm{2}} } \\ $$$${d}\left(\frac{{x}}{{y}}\right)=\frac{{ydx}−{xdy}}{{y}^{\mathrm{2}} } \\ $$$${some}\:{times}\:{above}\:{fail}\:{then}\:{put} \\ $$$${x}={rcos}\alpha\:\:{y}={rsin}\alpha \\ $$$${r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\:\:\:\mathrm{2}{rdr}=\mathrm{2}{xdx}+\mathrm{2}{ydy} \\ $$$${rdr}={xdx}+{ydy} \\ $$$${tan}\alpha=\frac{{y}}{{x}} \\ $$$${sec}^{\mathrm{2}} \alpha\frac{{d}\alpha}{{dx}}=\frac{{x}\frac{{dy}}{{dx}}−{y}}{{x}^{\mathrm{2}} } \\ $$$${sec}^{\mathrm{2}} \alpha{d}\alpha=\frac{{xdy}−{ydx}}{{x}^{\mathrm{2}} } \\ $$$${use}\:{them}\: \\ $$

Commented by rahul 19 last updated on 17/Aug/18

Sir, don′t you feel quite bad when  you came to know our beloved Atalji  is no more with us.

$$\mathrm{Sir},\:\mathrm{don}'\mathrm{t}\:\mathrm{you}\:\mathrm{feel}\:\mathrm{quite}\:\mathrm{bad}\:\mathrm{when} \\ $$$$\mathrm{you}\:\mathrm{came}\:\mathrm{to}\:\mathrm{know}\:\mathrm{our}\:\mathrm{beloved}\:\mathrm{Atalji} \\ $$$$\mathrm{is}\:\mathrm{no}\:\mathrm{more}\:\mathrm{with}\:\mathrm{us}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Aug/18

yes...he was a true mass leader...good orator..  excellent writer...above all true replica of human  being...

$${yes}...{he}\:{was}\:{a}\:{true}\:{mass}\:{leader}...{good}\:{orator}.. \\ $$$${excellent}\:{writer}...{above}\:{all}\:{true}\:{replica}\:{of}\:{human} \\ $$$${being}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com