Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 91812 by niroj last updated on 03/May/20

 Solve clairaut′s equation and find   general and singular solution:  (i) y=px+p^n    (ii) (y+1)p−xp^2 +2=0

$$\:\mathrm{Solve}\:\mathrm{clairaut}'\mathrm{s}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{find} \\ $$$$\:\mathrm{general}\:\mathrm{and}\:\mathrm{singular}\:\mathrm{solution}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{y}=\mathrm{px}+\mathrm{p}^{\mathrm{n}} \\ $$$$\:\left(\mathrm{ii}\right)\:\left(\mathrm{y}+\mathrm{1}\right)\mathrm{p}−\mathrm{xp}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$

Commented by john santu last updated on 03/May/20

(1)put xy=Y ; x=X  x(dy/dx)+y = (dY/dx) = P ; dx = dX  y+px = P , where p=(dy/dx)  ⇒y=px+p^n   y= P−y−p^n ⇒2y=P−p^n   (Y/x)=P−(((P−y)/x))^n   Y=Px−(((P−(Y/x))^n )/x^(n−1) )  continue...

$$\left(\mathrm{1}\right){put}\:{xy}={Y}\:;\:{x}={X} \\ $$$${x}\frac{{dy}}{{dx}}+{y}\:=\:\frac{{dY}}{{dx}}\:=\:{P}\:;\:{dx}\:=\:{dX} \\ $$$${y}+{px}\:=\:{P}\:,\:{where}\:{p}=\frac{{dy}}{{dx}} \\ $$$$\Rightarrow{y}={px}+{p}^{{n}} \\ $$$${y}=\:{P}−{y}−{p}^{{n}} \Rightarrow\mathrm{2}{y}={P}−{p}^{{n}} \\ $$$$\frac{{Y}}{{x}}={P}−\left(\frac{{P}−{y}}{{x}}\right)^{{n}} \\ $$$${Y}={Px}−\frac{\left({P}−\frac{{Y}}{{x}}\right)^{{n}} }{{x}^{{n}−\mathrm{1}} } \\ $$$${continue}... \\ $$

Commented by john santu last updated on 03/May/20

����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com