Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 11854 by tawa last updated on 02/Apr/17

Solve by mathematical induction that  1 + (1/(1 + 2)) + (1/(1 + 2 + 3)) + ... + (1/(1 + 2 + 3 + ... + n)) = ((2n)/(n + 1))

$$\mathrm{Solve}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that} \\ $$$$\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}}\:+\:...\:+\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:...\:+\:\mathrm{n}}\:=\:\frac{\mathrm{2n}}{\mathrm{n}\:+\:\mathrm{1}} \\ $$

Answered by sandy_suhendra last updated on 03/Apr/17

for n=1  1=((2.1)/(1+1)) (is true)    for n=k  1+(1/(1+2))+...+(1/(1+2+3+...+k))=((2k)/(k+1))    for n=(k+1) should be = ((2(k+1))/([(k+1)+1]))       [1+(1/(1+2))+...+(1/(1+2+3...+k))]+(1/(1+2+3+...+k+(k+1)))       =((2k)/(k+1)) + (1/(((k+1)/2)(1+k+1)))  =((2k)/(k+1))+(2/((k+1)(k+2)))  =((2k(k+2)+2)/((k+1)(k+2)))  =((2k^2 +4k+2)/((k+1)(k+2)))  =((2(k+1)(k+1))/((k+1)[(k+1)+1]))  =((2(k+1))/([(k+1)+1]))     (is proved)

$$\mathrm{for}\:\mathrm{n}=\mathrm{1} \\ $$$$\mathrm{1}=\frac{\mathrm{2}.\mathrm{1}}{\mathrm{1}+\mathrm{1}}\:\left(\mathrm{is}\:\mathrm{true}\right) \\ $$$$ \\ $$$$\mathrm{for}\:\mathrm{n}=\mathrm{k} \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{k}}=\frac{\mathrm{2k}}{\mathrm{k}+\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{for}\:\mathrm{n}=\left(\mathrm{k}+\mathrm{1}\right)\:\mathrm{should}\:\mathrm{be}\:=\:\frac{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)}{\left[\left(\mathrm{k}+\mathrm{1}\right)+\mathrm{1}\right]}\:\:\:\:\: \\ $$$$\left[\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}...+\mathrm{k}}\right]+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{k}+\left(\mathrm{k}+\mathrm{1}\right)}\:\:\:\:\: \\ $$$$=\frac{\mathrm{2k}}{\mathrm{k}+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\frac{\mathrm{k}+\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{k}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{2k}}{\mathrm{k}+\mathrm{1}}+\frac{\mathrm{2}}{\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{2k}\left(\mathrm{k}+\mathrm{2}\right)+\mathrm{2}}{\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{2k}^{\mathrm{2}} +\mathrm{4k}+\mathrm{2}}{\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{1}\right)}{\left(\mathrm{k}+\mathrm{1}\right)\left[\left(\mathrm{k}+\mathrm{1}\right)+\mathrm{1}\right]} \\ $$$$=\frac{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)}{\left[\left(\mathrm{k}+\mathrm{1}\right)+\mathrm{1}\right]}\:\:\:\:\:\left(\mathrm{is}\:\mathrm{proved}\right) \\ $$

Commented by Mr Chheang Chantria last updated on 03/Apr/17

perfect solution.

$$\boldsymbol{{perfect}}\:\boldsymbol{{solution}}. \\ $$

Commented by tawa last updated on 03/Apr/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com