Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80405 by TawaTawa last updated on 02/Feb/20

Solve:  (a)         (x − 3)^2   >  − 5  (b)            3x^2   >  − 12

$$\mathrm{Solve}: \\ $$$$\left(\mathrm{a}\right)\:\:\:\:\:\:\:\:\:\left(\mathrm{x}\:−\:\mathrm{3}\right)^{\mathrm{2}} \:\:>\:\:−\:\mathrm{5} \\ $$$$\left(\mathrm{b}\right)\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3x}^{\mathrm{2}} \:\:>\:\:−\:\mathrm{12} \\ $$

Commented by MJS last updated on 02/Feb/20

a     (x−3)^2 ≥0>−5 ⇒ true for all x∈R  b     3x^2 ≥0>−12 ⇒ true for all x∈R  strange examples...

$$\mathrm{a}\:\:\:\:\:\left({x}−\mathrm{3}\right)^{\mathrm{2}} \geqslant\mathrm{0}>−\mathrm{5}\:\Rightarrow\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:{x}\in\mathbb{R} \\ $$$$\mathrm{b}\:\:\:\:\:\mathrm{3}{x}^{\mathrm{2}} \geqslant\mathrm{0}>−\mathrm{12}\:\Rightarrow\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:{x}\in\mathbb{R} \\ $$$$\mathrm{strange}\:\mathrm{examples}... \\ $$

Commented by TawaTawa last updated on 02/Feb/20

Sir,  no workings ??

$$\mathrm{Sir},\:\:\mathrm{no}\:\mathrm{workings}\:?? \\ $$

Commented by MJS last updated on 02/Feb/20

no workings.  ∀r∈R: r^2 ≥0  nothing else is necessary

$$\mathrm{no}\:\mathrm{workings}. \\ $$$$\forall{r}\in\mathbb{R}:\:{r}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\mathrm{nothing}\:\mathrm{else}\:\mathrm{is}\:\mathrm{necessary} \\ $$

Commented by TawaTawa last updated on 02/Feb/20

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by sandy_delta last updated on 03/Feb/20

how about complex number?

$${how}\:{about}\:{complex}\:{number}? \\ $$

Commented by jagoll last updated on 03/Feb/20

(a) (x−3)^2 +5>0  (x−3−i(√5))(x−3+i(√5))>0  x<3−i(√5) ∨x>3+i(√5)

$$\left({a}\right)\:\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{5}>\mathrm{0} \\ $$$$\left({x}−\mathrm{3}−{i}\sqrt{\mathrm{5}}\right)\left({x}−\mathrm{3}+{i}\sqrt{\mathrm{5}}\right)>\mathrm{0} \\ $$$${x}<\mathrm{3}−{i}\sqrt{\mathrm{5}}\:\vee{x}>\mathrm{3}+{i}\sqrt{\mathrm{5}} \\ $$

Commented by jagoll last updated on 03/Feb/20

(b) 3x^2 +12>0  3(x^2 +4)>0  3(x+2i)(x−2i)>0  x<−2i ∨x>2i

$$\left({b}\right)\:\mathrm{3}{x}^{\mathrm{2}} +\mathrm{12}>\mathrm{0} \\ $$$$\mathrm{3}\left({x}^{\mathrm{2}} +\mathrm{4}\right)>\mathrm{0} \\ $$$$\mathrm{3}\left({x}+\mathrm{2}{i}\right)\left({x}−\mathrm{2}{i}\right)>\mathrm{0} \\ $$$${x}<−\mathrm{2}{i}\:\vee{x}>\mathrm{2}{i} \\ $$

Commented by MJS last updated on 03/Feb/20

complex numbers cannot be sorted using  < or > so this makes no sense at all

$$\mathrm{complex}\:\mathrm{numbers}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{sorted}\:\mathrm{using} \\ $$$$<\:\mathrm{or}\:>\:\mathrm{so}\:\mathrm{this}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{sense}\:\mathrm{at}\:\mathrm{all} \\ $$

Commented by jagoll last updated on 03/Feb/20

−2i < 2i sir?

$$−\mathrm{2}{i}\:<\:\mathrm{2}{i}\:{sir}? \\ $$

Commented by MJS last updated on 03/Feb/20

−2i<2i     ∣−2i  −4i<0     ∣÷(−4)  i>0  we are allowed to multiply both sides with  a number>0 without changing the <> signs  i>0     ∣×i  i^2 >0  −1>0  wrong    i<0???  we must change the <> signs when multiplying  with a number <0  i<0     ∣×i  i^2 >0  −1>0  wrong    ⇒ i is neither >0 nor <0

$$−\mathrm{2i}<\mathrm{2i}\:\:\:\:\:\mid−\mathrm{2i} \\ $$$$−\mathrm{4i}<\mathrm{0}\:\:\:\:\:\mid\boldsymbol{\div}\left(−\mathrm{4}\right) \\ $$$$\mathrm{i}>\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{are}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{multiply}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{with} \\ $$$$\mathrm{a}\:\mathrm{number}>\mathrm{0}\:\mathrm{without}\:\mathrm{changing}\:\mathrm{the}\:<>\:\mathrm{signs} \\ $$$$\mathrm{i}>\mathrm{0}\:\:\:\:\:\mid×\mathrm{i} \\ $$$$\mathrm{i}^{\mathrm{2}} >\mathrm{0} \\ $$$$−\mathrm{1}>\mathrm{0} \\ $$$$\mathrm{wrong} \\ $$$$ \\ $$$$\mathrm{i}<\mathrm{0}??? \\ $$$$\mathrm{we}\:\mathrm{must}\:\mathrm{change}\:\mathrm{the}\:<>\:\mathrm{signs}\:\mathrm{when}\:\mathrm{multiplying} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{number}\:<\mathrm{0} \\ $$$$\mathrm{i}<\mathrm{0}\:\:\:\:\:\mid×\mathrm{i} \\ $$$$\mathrm{i}^{\mathrm{2}} >\mathrm{0} \\ $$$$−\mathrm{1}>\mathrm{0} \\ $$$$\mathrm{wrong} \\ $$$$ \\ $$$$\Rightarrow\:\mathrm{i}\:{is}\:{neither}\:>\mathrm{0}\:{nor}\:<\mathrm{0} \\ $$

Commented by jagoll last updated on 03/Feb/20

thank you mister

$${thank}\:{you}\:{mister} \\ $$

Answered by sandy_delta last updated on 03/Feb/20

(b) 3x^(2 ) > −12  x^2  > −4  x^2  − (−4) > 0  (x + (√(−4)))(x − (√(−4))) > 0  (x + 2i) (x−2i) > 0  x <−2i ∨ x>2i

$$\left({b}\right)\:\mathrm{3}{x}^{\mathrm{2}\:} >\:−\mathrm{12} \\ $$$${x}^{\mathrm{2}} \:>\:−\mathrm{4} \\ $$$${x}^{\mathrm{2}} \:−\:\left(−\mathrm{4}\right)\:>\:\mathrm{0} \\ $$$$\left({x}\:+\:\sqrt{−\mathrm{4}}\right)\left({x}\:−\:\sqrt{−\mathrm{4}}\right)\:>\:\mathrm{0} \\ $$$$\left({x}\:+\:\mathrm{2}{i}\right)\:\left({x}−\mathrm{2}{i}\right)\:>\:\mathrm{0} \\ $$$${x}\:<−\mathrm{2}{i}\:\vee\:{x}>\mathrm{2}{i} \\ $$

Commented by MJS last updated on 03/Feb/20

see my above comment and/or please tell  me if  −3i+5 is smaller or greater than −2i

$$\mathrm{see}\:\mathrm{my}\:\mathrm{above}\:\mathrm{comment}\:\mathrm{and}/\mathrm{or}\:\mathrm{please}\:\mathrm{tell} \\ $$$$\mathrm{me}\:\mathrm{if} \\ $$$$−\mathrm{3i}+\mathrm{5}\:\mathrm{is}\:\mathrm{smaller}\:\mathrm{or}\:\mathrm{greater}\:\mathrm{than}\:−\mathrm{2i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com