Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 1961 by alib last updated on 26/Oct/15

Solve...    1+ sin 2x = sin x + cos x

$${Solve}... \\ $$$$ \\ $$$$\mathrm{1}+\:{sin}\:\mathrm{2}{x}\:=\:{sin}\:{x}\:+\:{cos}\:{x} \\ $$

Answered by Rasheed Soomro last updated on 26/Oct/15

1+ sin 2x = sin x + cos x  1+2sin x cos x−sin x −cos x=0  sin^2 x+cos^2 x+2sin x cos x −(sin x+cos x)=0   (sin x +cos x)^2 −(sin x+cos x)=0  (sin x+cos x)(sin x+cos x−1)=0  sin x + cos x = 0 ∣ sin x+cos x−1=0  sin x + cos x = 0 ∣ sin x +cos x=1  sin x=−cos x       ∣ sin x=1−cos x  sin^2 x=cos^2 x         ∣sin^2 x=1+cos^2 x−2 cos x  sin^2 x=1−sin^2 x   ∣ 1−cos^2 x=1+cos^2 x−2 cos x  sin^2 x=(1/2)               ∣ cos^2 x−cos x=0  x=sin^(−1) (±(1/(√2)))      ∣ cos x(cos x−1)=0⇒cos x=0 ∨ cos x=1  x=(π/4),((3π)/4),((5π)/4),((7π)/4) in the interval (0,2π) ∣ x=(π/2),((3π)/2),0 in (0,2π)  Extraneous roots may be inluded.

$$\mathrm{1}+\:{sin}\:\mathrm{2}{x}\:=\:{sin}\:{x}\:+\:{cos}\:{x} \\ $$$$\mathrm{1}+\mathrm{2}{sin}\:{x}\:{cos}\:{x}−{sin}\:{x}\:−{cos}\:{x}=\mathrm{0} \\ $$$${sin}^{\mathrm{2}} {x}+{cos}^{\mathrm{2}} {x}+\mathrm{2}{sin}\:{x}\:{cos}\:{x}\:−\left({sin}\:{x}+{cos}\:{x}\right)=\mathrm{0}\: \\ $$$$\left({sin}\:{x}\:+{cos}\:{x}\right)^{\mathrm{2}} −\left({sin}\:{x}+{cos}\:{x}\right)=\mathrm{0} \\ $$$$\left({sin}\:{x}+{cos}\:{x}\right)\left({sin}\:{x}+{cos}\:{x}−\mathrm{1}\right)=\mathrm{0} \\ $$$${sin}\:{x}\:+\:{cos}\:{x}\:=\:\mathrm{0}\:\mid\:{sin}\:{x}+{cos}\:{x}−\mathrm{1}=\mathrm{0} \\ $$$${sin}\:{x}\:+\:{cos}\:{x}\:=\:\mathrm{0}\:\mid\:{sin}\:{x}\:+{cos}\:{x}=\mathrm{1} \\ $$$${sin}\:{x}=−{cos}\:{x}\:\:\:\:\:\:\:\mid\:{sin}\:{x}=\mathrm{1}−{cos}\:{x} \\ $$$${sin}^{\mathrm{2}} {x}={cos}^{\mathrm{2}} {x}\:\:\:\:\:\:\:\:\:\mid{sin}^{\mathrm{2}} {x}=\mathrm{1}+{cos}^{\mathrm{2}} {x}−\mathrm{2}\:{cos}\:{x} \\ $$$${sin}^{\mathrm{2}} {x}=\mathrm{1}−{sin}^{\mathrm{2}} {x}\:\:\:\mid\:\mathrm{1}−{cos}^{\mathrm{2}} {x}=\mathrm{1}+{cos}^{\mathrm{2}} {x}−\mathrm{2}\:{cos}\:{x} \\ $$$${sin}^{\mathrm{2}} {x}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:{cos}^{\mathrm{2}} {x}−{cos}\:{x}=\mathrm{0} \\ $$$${x}={sin}^{−\mathrm{1}} \left(\pm\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\:\:\:\:\:\:\mid\:{cos}\:{x}\left({cos}\:{x}−\mathrm{1}\right)=\mathrm{0}\Rightarrow{cos}\:{x}=\mathrm{0}\:\vee\:{cos}\:{x}=\mathrm{1} \\ $$$${x}=\frac{\pi}{\mathrm{4}},\frac{\mathrm{3}\pi}{\mathrm{4}},\frac{\mathrm{5}\pi}{\mathrm{4}},\frac{\mathrm{7}\pi}{\mathrm{4}}\:{in}\:{the}\:{interval}\:\left(\mathrm{0},\mathrm{2}\pi\right)\:\mid\:{x}=\frac{\pi}{\mathrm{2}},\frac{\mathrm{3}\pi}{\mathrm{2}},\mathrm{0}\:{in}\:\left(\mathrm{0},\mathrm{2}\pi\right) \\ $$$${Extraneous}\:{roots}\:{may}\:{be}\:{inluded}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com