Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 134165 by liberty last updated on 28/Feb/21

Solve (√(1+cos x)) + (√(1−cos x)) = 2sin x

$$\mathrm{Solve}\:\sqrt{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\:+\:\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\:=\:\mathrm{2sin}\:\mathrm{x} \\ $$

Answered by EDWIN88 last updated on 28/Feb/21

square both sides  ⇔ 2+2(√(1−cos^2 x)) = 4sin^2 x  ⇒ 2+2∣sin x∣ = 4sin^2 x   ⇒2sin^2 x ± sin x −1 = 0  ⇒sin x = ((±1 ±3)/4) ∈ {−1,−(1/2),(1/2),2 }  since the LHS is always nonnegative  so the sine on the right must be nonnegative  to. Also sin (x)=(1/2) turns out to be wrong  a solution when we try to apply it.  This leaves sin (x)=1 ⇒ x=2nπ +(π/2) or  x = 2π(n+(1/4))

$$\mathrm{square}\:\mathrm{both}\:\mathrm{sides} \\ $$$$\Leftrightarrow\:\mathrm{2}+\mathrm{2}\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:=\:\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x} \\ $$$$\Rightarrow\:\mathrm{2}+\mathrm{2}\mid\mathrm{sin}\:\mathrm{x}\mid\:=\:\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}\: \\ $$$$\Rightarrow\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}\:\pm\:\mathrm{sin}\:\mathrm{x}\:−\mathrm{1}\:=\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\mathrm{x}\:=\:\frac{\pm\mathrm{1}\:\pm\mathrm{3}}{\mathrm{4}}\:\in\:\left\{−\mathrm{1},−\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}},\mathrm{2}\:\right\} \\ $$$$\mathrm{since}\:\mathrm{the}\:\mathrm{LHS}\:\mathrm{is}\:\mathrm{always}\:\mathrm{nonnegative} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{sine}\:\mathrm{on}\:\mathrm{the}\:\mathrm{right}\:\mathrm{must}\:\mathrm{be}\:\mathrm{nonnegative} \\ $$$$\mathrm{to}.\:\mathrm{Also}\:\mathrm{sin}\:\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{turns}\:\mathrm{out}\:\mathrm{to}\:\mathrm{be}\:\mathrm{wrong} \\ $$$$\mathrm{a}\:\mathrm{solution}\:\mathrm{when}\:\mathrm{we}\:\mathrm{try}\:\mathrm{to}\:\mathrm{apply}\:\mathrm{it}. \\ $$$$\mathrm{This}\:\mathrm{leaves}\:\mathrm{sin}\:\left(\mathrm{x}\right)=\mathrm{1}\:\Rightarrow\:\mathrm{x}=\mathrm{2n}\pi\:+\frac{\pi}{\mathrm{2}}\:\mathrm{or} \\ $$$$\mathrm{x}\:=\:\mathrm{2}\pi\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$

Commented by EDWIN88 last updated on 28/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com