Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201802 by Frix last updated on 12/Dec/23

Solution of equations like this:  ((f(x)))^(1/n) +((g(x)))^(1/n) =((h(x)))^(1/n)   If the solution is not obvious we must get  rid of the radicals. In the following cases  this is easy:  (√a)+(√b)=(√c)       ⇒ a+2(√(ab))+b=c            ⇒ 4ab=(c−a−b)^2   (a)^(1/3) +(b)^(1/3) =(c)^(1/3)        ⇒ a+3((ab))^(1/3) ((a)^(1/3) +(b)^(1/3) )+b=c            ⇒ a+3((abc))^(1/3) +b=c                 ⇒ 27abc=(c−a−b)^3   But how to solve for n≥4?  I found this formula to get an equation  without radicals:  a^(1/n) +b^(1/n) =c^(1/n)   ⇒  Π_(k=0) ^(n−1)  (c−(a^(1/n) +b^(1/n) e^(i((2πk)/n)) )^n ) =0  For n=2, 3 we get above equations.  For n=4:  c^4 −4(a+b)c^3 +2(3a^2 −62ab+3b^2 )c^2 −4(a+b)(a^2 +30ab+b^2 )c+(a−b)^4 =0  ⇔  8ab(17c^2 +14(a+b)c+a^2 +b^2 )=(c−a−b)^4   For n=5:  625abc(c^2 +3(a+b)c+a^2 −3ab+b^2 )=(c−a−b)^5   I hope this helps...

$$\mathrm{Solution}\:\mathrm{of}\:\mathrm{equations}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\sqrt[{{n}}]{{f}\left({x}\right)}+\sqrt[{{n}}]{{g}\left({x}\right)}=\sqrt[{{n}}]{{h}\left({x}\right)} \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{not}\:\mathrm{obvious}\:\mathrm{we}\:\mathrm{must}\:\mathrm{get} \\ $$$$\mathrm{rid}\:\mathrm{of}\:\mathrm{the}\:\mathrm{radicals}.\:\mathrm{In}\:\mathrm{the}\:\mathrm{following}\:\mathrm{cases} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{easy}: \\ $$$$\sqrt{{a}}+\sqrt{{b}}=\sqrt{{c}} \\ $$$$\:\:\:\:\:\Rightarrow\:{a}+\mathrm{2}\sqrt{{ab}}+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{4}{ab}=\left({c}−{a}−{b}\right)^{\mathrm{2}} \\ $$$$\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}=\sqrt[{\mathrm{3}}]{{c}} \\ $$$$\:\:\:\:\:\Rightarrow\:{a}+\mathrm{3}\sqrt[{\mathrm{3}}]{{ab}}\left(\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}\right)+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{a}+\mathrm{3}\sqrt[{\mathrm{3}}]{{abc}}+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{27}{abc}=\left({c}−{a}−{b}\right)^{\mathrm{3}} \\ $$$$\mathrm{But}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{for}\:{n}\geqslant\mathrm{4}? \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{this}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{get}\:\mathrm{an}\:\mathrm{equation} \\ $$$$\mathrm{without}\:\mathrm{radicals}: \\ $$$${a}^{\frac{\mathrm{1}}{{n}}} +{b}^{\frac{\mathrm{1}}{{n}}} ={c}^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\:\left({c}−\left({a}^{\frac{\mathrm{1}}{{n}}} +{b}^{\frac{\mathrm{1}}{{n}}} \mathrm{e}^{\mathrm{i}\frac{\mathrm{2}\pi{k}}{{n}}} \right)^{{n}} \right)\:=\mathrm{0} \\ $$$$\mathrm{For}\:{n}=\mathrm{2},\:\mathrm{3}\:\mathrm{we}\:\mathrm{get}\:\mathrm{above}\:\mathrm{equations}. \\ $$$$\mathrm{For}\:{n}=\mathrm{4}: \\ $$$${c}^{\mathrm{4}} −\mathrm{4}\left({a}+{b}\right){c}^{\mathrm{3}} +\mathrm{2}\left(\mathrm{3}{a}^{\mathrm{2}} −\mathrm{62}{ab}+\mathrm{3}{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} −\mathrm{4}\left({a}+{b}\right)\left({a}^{\mathrm{2}} +\mathrm{30}{ab}+{b}^{\mathrm{2}} \right){c}+\left({a}−{b}\right)^{\mathrm{4}} =\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{8}{ab}\left(\mathrm{17}{c}^{\mathrm{2}} +\mathrm{14}\left({a}+{b}\right){c}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\left({c}−{a}−{b}\right)^{\mathrm{4}} \\ $$$$\mathrm{For}\:{n}=\mathrm{5}: \\ $$$$\mathrm{625}{abc}\left({c}^{\mathrm{2}} +\mathrm{3}\left({a}+{b}\right){c}+{a}^{\mathrm{2}} −\mathrm{3}{ab}+{b}^{\mathrm{2}} \right)=\left({c}−{a}−{b}\right)^{\mathrm{5}} \\ $$$$\mathrm{I}\:\mathrm{hope}\:\mathrm{this}\:\mathrm{helps}... \\ $$

Commented by Calculusboy last updated on 12/Dec/23

yes

$$\boldsymbol{{yes}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com