Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 4222 by Rasheed Soomro last updated on 02/Jan/16

Six free-hand lines are drawn inside  a circle in order to divide it into maximum  number of parts.Determine this number.  Note that a free-hand line has following   three  properties:  i) It doesn′t cut  itself.  ii)It joins two points of circle.  iii) It can cut another line at most at three      points.  Whatif the number of lines is n?

$${Six}\:{free}-{hand}\:{lines}\:{are}\:{drawn}\:{inside} \\ $$$${a}\:{circle}\:{in}\:{order}\:{to}\:{divide}\:{it}\:{into}\:{maximum} \\ $$$${number}\:{of}\:{parts}.{Determine}\:{this}\:{number}. \\ $$$${Note}\:{that}\:{a}\:{free}-{hand}\:{line}\:{has}\:{following} \\ $$$$\:{three}\:\:{properties}: \\ $$$$\left.{i}\right)\:{It}\:{doesn}'{t}\:{cut}\:\:{itself}. \\ $$$$\left.{ii}\right){It}\:{joins}\:{two}\:{points}\:{of}\:{circle}. \\ $$$$\left.{iii}\right)\:{It}\:{can}\:{cut}\:{another}\:{line}\:{at}\:{most}\:{at}\:{three} \\ $$$$\:\:\:\:{points}. \\ $$$${Whatif}\:{the}\:{number}\:{of}\:{lines}\:{is}\:{n}? \\ $$

Commented by prakash jain last updated on 03/Jan/16

a_0 =1  a_n =a_(n−1) +m(n−1)+1  a_n =1+((m(n−1)n)/2)+n

$${a}_{\mathrm{0}} =\mathrm{1} \\ $$$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +{m}\left({n}−\mathrm{1}\right)+\mathrm{1} \\ $$$${a}_{{n}} =\mathrm{1}+\frac{{m}\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}+{n} \\ $$

Commented by prakash jain last updated on 03/Jan/16

1st line− 2 parts  2nd line−6 parts  n^(th)  line − 3(n−1)+1 parts added  a_0 =1  a_n =a_(n−1) +3n−2  a_n =1+3(1)−2+3(2)−2+3(3)−2+...+3(n)−2  a_n =1+((3n^2 +3n)/2)−2n  a_n =((2+3n^2 +3n−4n)/2)=((3n^2 −n+2)/2)

$$\mathrm{1}{st}\:\mathrm{line}−\:\mathrm{2}\:\mathrm{parts} \\ $$$$\mathrm{2nd}\:\mathrm{line}−\mathrm{6}\:\mathrm{parts} \\ $$$${n}^{{th}} \:\mathrm{line}\:−\:\mathrm{3}\left({n}−\mathrm{1}\right)+\mathrm{1}\:\mathrm{parts}\:\mathrm{added} \\ $$$${a}_{\mathrm{0}} =\mathrm{1} \\ $$$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{3}{n}−\mathrm{2} \\ $$$${a}_{{n}} =\mathrm{1}+\mathrm{3}\left(\mathrm{1}\right)−\mathrm{2}+\mathrm{3}\left(\mathrm{2}\right)−\mathrm{2}+\mathrm{3}\left(\mathrm{3}\right)−\mathrm{2}+...+\mathrm{3}\left({n}\right)−\mathrm{2} \\ $$$${a}_{{n}} =\mathrm{1}+\frac{\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}}{\mathrm{2}}−\mathrm{2}{n} \\ $$$${a}_{{n}} =\frac{\mathrm{2}+\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}−\mathrm{4}{n}}{\mathrm{2}}=\frac{\mathrm{3}{n}^{\mathrm{2}} −{n}+\mathrm{2}}{\mathrm{2}} \\ $$

Commented by Rasheed Soomro last updated on 03/Jan/16

THαnk^S !  What if the free-hand line can cut  other line at most at m places.

$$\mathcal{TH}\alpha{n}\Bbbk^{\mathcal{S}} ! \\ $$$${What}\:{if}\:{the}\:{free}-{hand}\:{line}\:{can}\:{cut} \\ $$$${other}\:{line}\:{at}\:{most}\:{at}\:{m}\:{places}. \\ $$

Commented by Rasheed Soomro last updated on 03/Jan/16

Th𝛂nX again!

$$\mathbb{T}\boldsymbol{\mathrm{h}\alpha\mathrm{n}}\mathbb{X}\:\mathrm{again}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com