Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 37691 by MJS last updated on 16/Jun/18

Sir Aifour, I just answered your question  number 37209... greetings from a rainy  Saturday evening in Vienna, Austria!

$$\mathrm{Sir}\:\mathrm{Aifour},\:\mathrm{I}\:\mathrm{just}\:\mathrm{answered}\:\mathrm{your}\:\mathrm{question} \\ $$$$\mathrm{number}\:\mathrm{37209}...\:\mathrm{greetings}\:\mathrm{from}\:\mathrm{a}\:\mathrm{rainy} \\ $$$$\mathrm{Saturday}\:\mathrm{evening}\:\mathrm{in}\:\mathrm{Vienna},\:\mathrm{Austria}! \\ $$

Commented by ajfour last updated on 16/Jun/18

rainy even up here, Sir  i′ll try and follow your solution.

$${rainy}\:{even}\:{up}\:{here},\:{Sir} \\ $$$${i}'{ll}\:{try}\:{and}\:{follow}\:{your}\:{solution}. \\ $$

Commented by MJS last updated on 16/Jun/18

the idea is simple, but the equations get  harder to simplify from step to step  the method is easy to explain:  just think about the required distances  between the centers  2 circles touching from outside:  distance^2 =(sum of radii)^2   2 circles touching, one inside the other:  distance^2 =(difference of radii)^2

$$\mathrm{the}\:\mathrm{idea}\:\mathrm{is}\:\mathrm{simple},\:\mathrm{but}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{get} \\ $$$$\mathrm{harder}\:\mathrm{to}\:\mathrm{simplify}\:\mathrm{from}\:\mathrm{step}\:\mathrm{to}\:\mathrm{step} \\ $$$$\mathrm{the}\:\mathrm{method}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{explain}: \\ $$$$\mathrm{just}\:\mathrm{think}\:\mathrm{about}\:\mathrm{the}\:\mathrm{required}\:\mathrm{distances} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{centers} \\ $$$$\mathrm{2}\:\mathrm{circles}\:\mathrm{touching}\:\mathrm{from}\:\mathrm{outside}: \\ $$$$\mathrm{distance}^{\mathrm{2}} =\left(\mathrm{sum}\:\mathrm{of}\:\mathrm{radii}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}\:\mathrm{circles}\:\mathrm{touching},\:\mathrm{one}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{other}: \\ $$$$\mathrm{distance}^{\mathrm{2}} =\left(\mathrm{difference}\:\mathrm{of}\:\mathrm{radii}\right)^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com