Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 131631 by liberty last updated on 07/Feb/21

Selecting randomly an integer  from 1 to 2000 , find the probability  that neither 6 nor 8 divides the  integer.

$$\mathrm{Selecting}\:\mathrm{randomly}\:\mathrm{an}\:\mathrm{integer} \\ $$$$\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{2000}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{neither}\:\mathrm{6}\:\mathrm{nor}\:\mathrm{8}\:\mathrm{divides}\:\mathrm{the} \\ $$$$\mathrm{integer}. \\ $$

Answered by som(math1967) last updated on 07/Feb/21

probability divisible by 6  ((333)/(2000))  [In the sereies 6,12....1998  1998=6+(n−1)×6 ∴n=333]  probability divisible by 8  =((250)/(2000))  [8+(n−1)×8=2000  ∴n=250]  probability divisible by both  6,8=((83)/(2000))  [1992=24+(n−1)×24  n=83]  ∴probability divisible by  6 or 8=((333)/(2000)) +((250)/(2000))−((83)/(2000))  =((500)/(2000))  ∴neither 6 nor 8   1−((500)/(2000))=((1500)/(2000))=(3/4)

$${probability}\:{divisible}\:{by}\:\mathrm{6} \\ $$$$\frac{\mathrm{333}}{\mathrm{2000}} \\ $$$$\left[{In}\:{the}\:{sereies}\:\mathrm{6},\mathrm{12}....\mathrm{1998}\right. \\ $$$$\left.\mathrm{1998}=\mathrm{6}+\left({n}−\mathrm{1}\right)×\mathrm{6}\:\therefore{n}=\mathrm{333}\right] \\ $$$${probability}\:{divisible}\:{by}\:\mathrm{8} \\ $$$$=\frac{\mathrm{250}}{\mathrm{2000}}\:\:\left[\mathrm{8}+\left({n}−\mathrm{1}\right)×\mathrm{8}=\mathrm{2000}\right. \\ $$$$\left.\therefore{n}=\mathrm{250}\right] \\ $$$${probability}\:{divisible}\:{by}\:{both} \\ $$$$\mathrm{6},\mathrm{8}=\frac{\mathrm{83}}{\mathrm{2000}} \\ $$$$\left[\mathrm{1992}=\mathrm{24}+\left({n}−\mathrm{1}\right)×\mathrm{24}\right. \\ $$$$\left.{n}=\mathrm{83}\right] \\ $$$$\therefore{probability}\:{divisible}\:{by} \\ $$$$\mathrm{6}\:{or}\:\mathrm{8}=\frac{\mathrm{333}}{\mathrm{2000}}\:+\frac{\mathrm{250}}{\mathrm{2000}}−\frac{\mathrm{83}}{\mathrm{2000}} \\ $$$$=\frac{\mathrm{500}}{\mathrm{2000}} \\ $$$$\therefore{neither}\:\mathrm{6}\:{nor}\:\mathrm{8} \\ $$$$\:\mathrm{1}−\frac{\mathrm{500}}{\mathrm{2000}}=\frac{\mathrm{1500}}{\mathrm{2000}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Commented by liberty last updated on 07/Feb/21

typo sir it should be ((250)/(2000))[8n] =2000  n=250

$$\mathrm{typo}\:\mathrm{sir}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\frac{\mathrm{250}}{\mathrm{2000}}\left[\mathrm{8n}\right]\:=\mathrm{2000} \\ $$$$\mathrm{n}=\mathrm{250} \\ $$

Commented by som(math1967) last updated on 07/Feb/21

yes sir,thank you

$${yes}\:{sir},{thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com