Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 26693 by Tinkutara last updated on 28/Dec/17

STATEMENT-1: The angle between  one of the lines represented by ax^2  +  2hxy + by^2  = 0 and one of the lines  represented by (a + 2008)x^2  + 2hxy  + (b + 2008)y^2  = 0 is equal to angle  between other two lines of the  system.  and  STATEMENT-2: The pair of lines  given by a^2 x^2  + 2008(a + b)xy + b^2 y^2   = 0 is equally inclined to the pair  given by ax^2  + 2008xy + by^2  = 0.

$${STATEMENT}-\mathrm{1}:\:{The}\:{angle}\:{between} \\ $$$${one}\:{of}\:{the}\:{lines}\:{represented}\:{by}\:{ax}^{\mathrm{2}} \:+ \\ $$$$\mathrm{2}{hxy}\:+\:{by}^{\mathrm{2}} \:=\:\mathrm{0}\:{and}\:{one}\:{of}\:{the}\:{lines} \\ $$$${represented}\:{by}\:\left({a}\:+\:\mathrm{2008}\right){x}^{\mathrm{2}} \:+\:\mathrm{2}{hxy} \\ $$$$+\:\left({b}\:+\:\mathrm{2008}\right){y}^{\mathrm{2}} \:=\:\mathrm{0}\:{is}\:{equal}\:{to}\:{angle} \\ $$$${between}\:{other}\:{two}\:{lines}\:{of}\:{the} \\ $$$${system}. \\ $$$$\boldsymbol{{and}} \\ $$$${STATEMENT}-\mathrm{2}:\:{The}\:{pair}\:{of}\:{lines} \\ $$$${given}\:{by}\:{a}^{\mathrm{2}} {x}^{\mathrm{2}} \:+\:\mathrm{2008}\left({a}\:+\:{b}\right){xy}\:+\:{b}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$$=\:\mathrm{0}\:{is}\:{equally}\:{inclined}\:{to}\:{the}\:{pair} \\ $$$${given}\:{by}\:{ax}^{\mathrm{2}} \:+\:\mathrm{2008}{xy}\:+\:{by}^{\mathrm{2}} \:=\:\mathrm{0}. \\ $$

Commented by Tinkutara last updated on 31/Dec/17

Anyone?

Commented by Tinkutara last updated on 31/Dec/17

Answer given is both true but Reason doesn't explain Assertion.

Commented by ajfour last updated on 31/Dec/17

(1) True  (2) False

$$\left(\mathrm{1}\right)\:{True}\:\:\left(\mathrm{2}\right)\:{False} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com