Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 153847 by mathdanisur last updated on 11/Sep/21

S = x + 2x^2  + ... + nx^n

$$\boldsymbol{\mathrm{S}}\:=\:\mathrm{x}\:+\:\mathrm{2x}^{\mathrm{2}} \:+\:...\:+\:\mathrm{nx}^{\boldsymbol{\mathrm{n}}} \\ $$$$ \\ $$

Answered by liberty last updated on 11/Sep/21

 S=x+2x^2 +3x^3 +4x^4 +…+nx^n   xS=    x^2 +2x^3 +3x^4 +…+(n−1)x^n +nx^(n+1)   (1−x)S=x+x^2 +x^3 +x^4 +…+x^n −nx^(n+1)   (1−x)S=((x(1−x^n ))/(1−x))−nx^(n+1)   S=((x(1−x^n ))/((1−x)^2 ))−((nx^(n+1) )/((1−x)))

$$\:{S}={x}+\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{4}} +\ldots+{nx}^{{n}} \\ $$$${xS}=\:\:\:\:{x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{4}} +\ldots+\left({n}−\mathrm{1}\right){x}^{{n}} +{nx}^{{n}+\mathrm{1}} \\ $$$$\left(\mathrm{1}−{x}\right){S}={x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +\ldots+{x}^{{n}} −{nx}^{{n}+\mathrm{1}} \\ $$$$\left(\mathrm{1}−{x}\right){S}=\frac{{x}\left(\mathrm{1}−{x}^{{n}} \right)}{\mathrm{1}−{x}}−{nx}^{{n}+\mathrm{1}} \\ $$$${S}=\frac{{x}\left(\mathrm{1}−{x}^{{n}} \right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }−\frac{{nx}^{{n}+\mathrm{1}} }{\left(\mathrm{1}−{x}\right)} \\ $$

Commented by mathdanisur last updated on 11/Sep/21

thanks ser nice

$$\mathrm{thanks}\:\mathrm{ser}\:\mathrm{nice} \\ $$

Commented by peter frank last updated on 11/Sep/21

thanks

$$\mathrm{thanks} \\ $$

Answered by mr W last updated on 11/Sep/21

Method 1:  x+x^2 +...+x^n =((x^n −1)/(x−1))  1+2x+...+nx^(n−1) =((nx^(n−1) )/(x−1))−((x^n −1)/((x−1)^2 ))  x+2x^2 +...+nx^n =((nx^n )/(x−1))−(((x^n −1)x)/((x−1)^2 ))    Method 2:  S=x+2x^2 +3x^3 +...+nx^n   xS=       x^2 +2x^3 +...+(n−1)x^n +nx^(n+1)   (1−x)S=x+x^2 +x^3 +...x^n −nx^(n+1)   (1−x)S=(((x^n −1)x)/(x−1))−nx^(n+1)   ⇒S=((nx^(n+1) )/(x−1))−(((x^n −1)x)/((x−1)^2 ))

$${Method}\:\mathrm{1}: \\ $$$${x}+{x}^{\mathrm{2}} +...+{x}^{{n}} =\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}} \\ $$$$\mathrm{1}+\mathrm{2}{x}+...+{nx}^{{n}−\mathrm{1}} =\frac{{nx}^{{n}−\mathrm{1}} }{{x}−\mathrm{1}}−\frac{{x}^{{n}} −\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${x}+\mathrm{2}{x}^{\mathrm{2}} +...+{nx}^{{n}} =\frac{{nx}^{{n}} }{{x}−\mathrm{1}}−\frac{\left({x}^{{n}} −\mathrm{1}\right){x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$${Method}\:\mathrm{2}: \\ $$$${S}={x}+\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{3}} +...+{nx}^{{n}} \\ $$$${xS}=\:\:\:\:\:\:\:{x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{3}} +...+\left({n}−\mathrm{1}\right){x}^{{n}} +{nx}^{{n}+\mathrm{1}} \\ $$$$\left(\mathrm{1}−{x}\right){S}={x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...{x}^{{n}} −{nx}^{{n}+\mathrm{1}} \\ $$$$\left(\mathrm{1}−{x}\right){S}=\frac{\left({x}^{{n}} −\mathrm{1}\right){x}}{{x}−\mathrm{1}}−{nx}^{{n}+\mathrm{1}} \\ $$$$\Rightarrow{S}=\frac{{nx}^{{n}+\mathrm{1}} }{{x}−\mathrm{1}}−\frac{\left({x}^{{n}} −\mathrm{1}\right){x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by mathdanisur last updated on 11/Sep/21

Very nice thanks ser

$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{thanks}\:\mathrm{ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com