Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 142023 by SOMEDAVONG last updated on 25/May/21

S_n =Σ_(k=0) ^n (1/((n−k)!(n+k)!)) =??

$$\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}−\mathrm{k}\right)!\left(\mathrm{n}+\mathrm{k}\right)!}\:=?? \\ $$

Answered by aleks041103 last updated on 25/May/21

(1/((n−k)!(n+k)!))=  =(1/((2n)!)) (((2n)!)/((n−k)!((2n)−(n−k))!))=  =(1/((2n)!)) (((   2n)),((n−k)) )  S_n =(1/((2n)!))Σ_(k=0) ^n  (((  2n)),((n−k)) ) = (1/((2n)!))Σ_(k=0) ^n  (((2n)),(( k)) )   (((2n)),(( k)) ) = (((    2n)),((2n−k)) )  ⇒Σ_(k=0) ^n  (((2n)),(( k)) ) = Σ_(k=0) ^n  (((     2n)),(( 2n−k)) ) =Σ_(k=n) ^(2n)  (((2n)),(( k)) ) =s  2s=Σ_(k=0) ^n  (((2n)),(( k)) ) +Σ_(k=n) ^(2n)  (((2n)),(( k)) ) = Σ_(k=0) ^(2n)  (((2n)),(( k)) ) =2^(2n)   ⇒Σ_(k=0) ^n  (((2n)),(( k)) ) =2^(2n−1)   ⇒S_n =(2^(2n−1) /((2n)!))

$$\frac{\mathrm{1}}{\left({n}−{k}\right)!\left({n}+{k}\right)!}= \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)!}\:\frac{\left(\mathrm{2}{n}\right)!}{\left({n}−{k}\right)!\left(\left(\mathrm{2}{n}\right)−\left({n}−{k}\right)\right)!}= \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)!}\begin{pmatrix}{\:\:\:\mathrm{2}{n}}\\{{n}−{k}}\end{pmatrix} \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)!}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\:\:\mathrm{2}{n}}\\{{n}−{k}}\end{pmatrix}\:=\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)!}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix} \\ $$$$\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\begin{pmatrix}{\:\:\:\:\mathrm{2}{n}}\\{\mathrm{2}{n}−{k}}\end{pmatrix} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\:\:\:\:\:\mathrm{2}{n}}\\{\:\mathrm{2}{n}−{k}}\end{pmatrix}\:=\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:={s} \\ $$$$\mathrm{2}{s}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:+\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\mathrm{2}^{\mathrm{2}{n}} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\Rightarrow{S}_{{n}} =\frac{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }{\left(\mathrm{2}{n}\right)!} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com