Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 7590 by FilupSmith last updated on 05/Sep/16

S = Σ_(n=2) ^k  ((2(n+1))/(n(n−1)))  S=?

$${S}\:=\:\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\:\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}\left({n}−\mathrm{1}\right)} \\ $$$${S}=? \\ $$

Commented by Yozzia last updated on 05/Sep/16

((2(n+1))/(n(n−1)))≡(a/n)+(b/(n−1))  ⇒2(n+1)=a(n−1)+bn  n=0⇒2=−a⇒a=−2  n=1⇒b=4  ∴ (4/(n−1))−(2/n)=((2(n+1))/(n(n−1)))  S=Σ_(n=2) ^k ((2(n+1))/(n(n−1)))=Σ_(n=2) ^k {(4/(n−1))−(2/n)}  S=2Σ_(n=2) ^k (1/(n−1))+2Σ_(n=2) ^k {(1/(n−1))−(1/n)}  S=2{1+(1/2)+(1/3)+...+(1/(k−2))}+2{1−(1/2)+(1/2)−(1/3)+(1/3)−(1/4)+(1/4)−(1/5)+...+(1/(k−3))−(1/(k−2))+(1/(k−2))−(1/(k−1))+(1/(k−1))−(1/k)}  S=2H_(k−2) +2(1−(1/k))

$$\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}\left({n}−\mathrm{1}\right)}\equiv\frac{{a}}{{n}}+\frac{{b}}{{n}−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}\left({n}+\mathrm{1}\right)={a}\left({n}−\mathrm{1}\right)+{bn} \\ $$$${n}=\mathrm{0}\Rightarrow\mathrm{2}=−{a}\Rightarrow{a}=−\mathrm{2} \\ $$$${n}=\mathrm{1}\Rightarrow{b}=\mathrm{4} \\ $$$$\therefore\:\frac{\mathrm{4}}{{n}−\mathrm{1}}−\frac{\mathrm{2}}{{n}}=\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}\left({n}−\mathrm{1}\right)} \\ $$$${S}=\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}\left({n}−\mathrm{1}\right)}=\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\left\{\frac{\mathrm{4}}{{n}−\mathrm{1}}−\frac{\mathrm{2}}{{n}}\right\} \\ $$$${S}=\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\frac{\mathrm{1}}{{n}−\mathrm{1}}+\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\left\{\frac{\mathrm{1}}{{n}−\mathrm{1}}−\frac{\mathrm{1}}{{n}}\right\} \\ $$$${S}=\mathrm{2}\left\{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{{k}−\mathrm{2}}\right\}+\mathrm{2}\left\{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{5}}+...+\frac{\mathrm{1}}{{k}−\mathrm{3}}−\frac{\mathrm{1}}{{k}−\mathrm{2}}+\frac{\mathrm{1}}{{k}−\mathrm{2}}−\frac{\mathrm{1}}{{k}−\mathrm{1}}+\frac{\mathrm{1}}{{k}−\mathrm{1}}−\frac{\mathrm{1}}{{k}}\right\} \\ $$$${S}=\mathrm{2}{H}_{{k}−\mathrm{2}} +\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right) \\ $$

Commented by FilupSmith last updated on 05/Sep/16

According to wolframAlpha:  S=2(−(1/k)+ψ^((0)) (k)+γ+1)  why???

$$\mathrm{According}\:\mathrm{to}\:\mathrm{wolframAlpha}: \\ $$$${S}=\mathrm{2}\left(−\frac{\mathrm{1}}{{k}}+\psi^{\left(\mathrm{0}\right)} \left({k}\right)+\gamma+\mathrm{1}\right) \\ $$$$\mathrm{why}??? \\ $$

Commented by FilupSmith last updated on 05/Sep/16

S=2H_(k−2) +2(1−(1/k))  S=2(H_(k−2) +1−(1/k))  S=2(−(1/k)+H_(k−2) +1)=2(−(1/k)+ψ^((0)) (k)+γ+1)  ∴H_(k−2) =ψ^((0)) (k)+γ      ?????

$${S}=\mathrm{2}{H}_{{k}−\mathrm{2}} +\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right) \\ $$$${S}=\mathrm{2}\left({H}_{{k}−\mathrm{2}} +\mathrm{1}−\frac{\mathrm{1}}{{k}}\right) \\ $$$${S}=\mathrm{2}\left(−\frac{\mathrm{1}}{{k}}+{H}_{{k}−\mathrm{2}} +\mathrm{1}\right)=\mathrm{2}\left(−\frac{\mathrm{1}}{{k}}+\psi^{\left(\mathrm{0}\right)} \left({k}\right)+\gamma+\mathrm{1}\right) \\ $$$$\therefore{H}_{{k}−\mathrm{2}} =\psi^{\left(\mathrm{0}\right)} \left({k}\right)+\gamma\:\:\:\:\:\:????? \\ $$

Commented by 123456 last updated on 05/Sep/16

yes, also  H_(k−1) =ψ^((0)) (k)    --digamma function  Σ_(n=2) ^k (1/(n−1))=Σ_(m=1) ^(k−1) (1/m)=H_(k−1)   m=n−1⇒ { ((n=2⇒m=2−1=1)),((n=k⇒m=k−1)) :}

$$\mathrm{yes},\:{also} \\ $$$${H}_{{k}−\mathrm{1}} =\psi^{\left(\mathrm{0}\right)} \left({k}\right)\:\:\:\:--{digamma}\:{function} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\frac{\mathrm{1}}{{n}−\mathrm{1}}=\underset{{m}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{m}}={H}_{{k}−\mathrm{1}} \\ $$$${m}={n}−\mathrm{1}\Rightarrow\begin{cases}{{n}=\mathrm{2}\Rightarrow{m}=\mathrm{2}−\mathrm{1}=\mathrm{1}}\\{{n}={k}\Rightarrow{m}={k}−\mathrm{1}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com