Question Number 190165 by TUN last updated on 29/Mar/23 | ||
$${S}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+...+\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$ $$=>\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}_{{n}} =¿ \\ $$ | ||
Answered by JDamian last updated on 29/Mar/23 | ||
$$\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$ | ||
Commented byTUN last updated on 10/Apr/23 | ||
$${how}\:{to}\:{solve}\:{it} \\ $$ | ||