Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 197906 by mnjuly1970 last updated on 03/Oct/23

         S= Σ_(k=1) ^∞  (( Γ^( 2) ( k ))/(k Γ (2k ))) = ?          −−−−

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{S}=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\Gamma^{\:\mathrm{2}} \left(\:{k}\:\right)}{{k}\:\Gamma\:\left(\mathrm{2}{k}\:\right)}\:=\:? \\ $$$$\:\:\:\:\:\:\:\:−−−− \\ $$

Answered by Dwan last updated on 03/Oct/23

((Γ(k)Γ(k))/(Γ(k+k)))=∫_0 ^1 x^(k−1) (1−x)^(k−1) dx  S=∫_0 ^1 Σ_(k=1) ^∞ ((x^(k−1) (1−x)^(k−1) )/k)dx=∫_0 ^1 ((−ln(1−x+x^2 ))/(x−x^2 ))dx  =−(∫_0 ^1 ((ln(1−x+x^2 ))/(1−x))dx+∫_0 ^1 ((ln(1−x+x^2 ))/x)dx)  =−2∫_0 ^1 ((ln(1−x+x^2 ))/x)dx  =2∫_0 ^1 ((ln(1+x))/x)dx−2∫_0 ^1 ((ln(1+x^3 ))/x)dx  =2η(2)−(2/3)∫_0 ^1 ((ln(1+u))/u)du  =(2/3)η(2)=(2/3).(π^2 /(12))=(π^2 /(18))

$$\frac{\Gamma\left({k}\right)\Gamma\left({k}\right)}{\Gamma\left({k}+{k}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{k}−\mathrm{1}} {dx} \\ $$$${S}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{k}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{k}−\mathrm{1}} }{{k}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{ln}\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)}{{x}−{x}^{\mathrm{2}} }{dx} \\ $$$$=−\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)}{{x}}{dx}\right) \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)}{{x}}{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx}−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}{{x}}{dx} \\ $$$$=\mathrm{2}\eta\left(\mathrm{2}\right)−\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{u}\right)}{{u}}{du} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\eta\left(\mathrm{2}\right)=\frac{\mathrm{2}}{\mathrm{3}}.\frac{\pi^{\mathrm{2}} }{\mathrm{12}}=\frac{\pi^{\mathrm{2}} }{\mathrm{18}} \\ $$

Commented by mnjuly1970 last updated on 04/Oct/23

    thanks alot sir   so excellent solution...

$$\:\:\:\:{thanks}\:{alot}\:{sir}\: \\ $$$${so}\:{excellent}\:{solution}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com