Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 182432 by SANOGO last updated on 09/Dec/22

∫_R (t^2 /((t^2 +a^2 )^(n+1) ))dt =? /  a≠o , nεN^∗

Rt2(t2+a2)n+1dt=?/ao,nϵN

Answered by dre23 last updated on 10/Dec/22

t=∣a∣s  =∫_(−∞) ^∞ ((s^2 ∣a∣)/(a^(2n) (1+s^2 )^(n+1) ))ds,s=tg(z)  =((2∣a∣)/a^(2n) )∫_0 ^(π/2) sin^2 (z)cos^(2n) (z)dz=A  β(x,y)=2∫_0 ^(π/2) cos^(2x−1) (t)sin^(2y−1) (t)dt  A=((∣a∣)/a^(2n) )β(2n+(1/2),1+(1/2))=((∣a∣)/a^(2n) ).((Γ(2n+(1/2))Γ(1+(1/2)))/(Γ(2n+2)))  =((∣a∣[Π_(k=0) ^(2n−1) (k+(1/2))]Γ((1/2)).(1/2)Γ((1/2)))/(a^(2n) (2n+1)!))  =((π∣a∣Π_(k=0) ^n (2k+1))/(2^(2n+1) a^(2n) (2n+1)!))=((π∣a∣)/(2^(2n+1) a^(2n) 2^n n!))  =((π∣a∣)/(2^(3n+1) a^(2n) .n!))

t=∣as=s2aa2n(1+s2)n+1ds,s=tg(z)=2aa2n0π2sin2(z)cos2n(z)dz=Aβ(x,y)=20π2cos2x1(t)sin2y1(t)dtA=aa2nβ(2n+12,1+12)=aa2n.Γ(2n+12)Γ(1+12)Γ(2n+2)=a[2n1k=0(k+12)]Γ(12).12Γ(12)a2n(2n+1)!=πank=0(2k+1)22n+1a2n(2n+1)!=πa22n+1a2n2nn!=πa23n+1a2n.n!

Commented by SANOGO last updated on 11/Dec/22

merci

merci

Commented by dre23 last updated on 14/Dec/22

je vous en Prie

jevousenPrie

Terms of Service

Privacy Policy

Contact: info@tinkutara.com