Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 192142 by mehdee42 last updated on 09/May/23

Question  let   x=<a_n a_(n−1) ...a_1 a_0 > ∈N ; a_0 ≠0  &    y=<a_n a_(n−1) ...a_1 > ∈N  be   two natural numbers   such that  (x/y)∈N   find the number “ x ” ?

$${Question} \\ $$$${let}\:\:\:{x}=<{a}_{{n}} {a}_{{n}−\mathrm{1}} ...{a}_{\mathrm{1}} {a}_{\mathrm{0}} >\:\in\mathbb{N}\:;\:{a}_{\mathrm{0}} \neq\mathrm{0}\:\:\&\: \\ $$$$\:{y}=<{a}_{{n}} {a}_{{n}−\mathrm{1}} ...{a}_{\mathrm{1}} >\:\in\mathbb{N}\:\:{be}\: \\ $$$${two}\:{natural}\:{numbers}\: \\ $$$${such}\:{that}\:\:\frac{{x}}{{y}}\in\mathbb{N}\: \\ $$$${find}\:{the}\:{number}\:``\:{x}\:''\:? \\ $$$$ \\ $$

Answered by deleteduser1 last updated on 09/May/23

For a 2-digit number,x;possible values:  99,88,77,66,55,48,44,39,36,33,28,26,...,22,19,...,11    Now,for an n-digit number(n atleast 3)  (where a_0 ≠0)  (x/y)=((10x)/(x−a_0 ))=((10(x−a_0 )+10a_0 )/(x−a_0 ))=10+((10a_0 )/(x−a_0 ))  ⇒x−a_0 ∣10a_0 ⇒x−a_0 ≤10a_0   ⇒11a_0 ≥x  But this is impossible since max{11a_0 }=99  which is not atleast a 3-digit number.  ⇒Only 2-digit solutions exist.

$${For}\:{a}\:\mathrm{2}-{digit}\:{number},{x};{possible}\:{values}: \\ $$$$\mathrm{99},\mathrm{88},\mathrm{77},\mathrm{66},\mathrm{55},\mathrm{48},\mathrm{44},\mathrm{39},\mathrm{36},\mathrm{33},\mathrm{28},\mathrm{26},...,\mathrm{22},\mathrm{19},...,\mathrm{11} \\ $$$$ \\ $$$${Now},{for}\:{an}\:{n}-{digit}\:{number}\left({n}\:{atleast}\:\mathrm{3}\right) \\ $$$$\left({where}\:{a}_{\mathrm{0}} \neq\mathrm{0}\right) \\ $$$$\frac{{x}}{{y}}=\frac{\mathrm{10}{x}}{{x}−{a}_{\mathrm{0}} }=\frac{\mathrm{10}\left({x}−{a}_{\mathrm{0}} \right)+\mathrm{10}{a}_{\mathrm{0}} }{{x}−{a}_{\mathrm{0}} }=\mathrm{10}+\frac{\mathrm{10}{a}_{\mathrm{0}} }{{x}−{a}_{\mathrm{0}} } \\ $$$$\Rightarrow{x}−{a}_{\mathrm{0}} \mid\mathrm{10}{a}_{\mathrm{0}} \Rightarrow{x}−{a}_{\mathrm{0}} \leqslant\mathrm{10}{a}_{\mathrm{0}} \\ $$$$\Rightarrow\mathrm{11}{a}_{\mathrm{0}} \geqslant{x} \\ $$$${But}\:{this}\:{is}\:{impossible}\:{since}\:{max}\left\{\mathrm{11}{a}_{\mathrm{0}} \right\}=\mathrm{99} \\ $$$${which}\:{is}\:{not}\:{atleast}\:{a}\:\mathrm{3}-{digit}\:{number}. \\ $$$$\Rightarrow{Only}\:\mathrm{2}-{digit}\:{solutions}\:{exist}. \\ $$

Commented by mehdee42 last updated on 09/May/23

it is very beautiful solution.  in addition according to the condition “ a_0 ≠0”  x≠10,20,...,90

$${it}\:{is}\:{very}\:{beautiful}\:{solution}. \\ $$$${in}\:{addition}\:{according}\:{to}\:{the}\:{condition}\:``\:{a}_{\mathrm{0}} \neq\mathrm{0}'' \\ $$$${x}\neq\mathrm{10},\mathrm{20},...,\mathrm{90} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com