Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 13733 by prakash jain last updated on 22/May/17

Question continuing from  mrW1 post on p^2  mod n≡1.  Find a number n such that  for all m<n such that HCF(m,n)=1  m^2  mod n =1  e.g. for 12 possible value of m  are 1,5,7,11.

$$\mathrm{Question}\:\mathrm{continuing}\:\mathrm{from} \\ $$$$\mathrm{mrW1}\:\mathrm{post}\:\mathrm{on}\:{p}^{\mathrm{2}} \:\mathrm{mod}\:\mathrm{n}\equiv\mathrm{1}. \\ $$$$\mathrm{Find}\:\mathrm{a}\:\mathrm{number}\:{n}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{for}\:\mathrm{all}\:{m}<{n}\:\mathrm{such}\:\mathrm{that}\:\mathrm{HCF}\left({m},{n}\right)=\mathrm{1} \\ $$$${m}^{\mathrm{2}} \:\mathrm{mod}\:{n}\:=\mathrm{1} \\ $$$${e}.{g}.\:\mathrm{for}\:\mathrm{12}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{m} \\ $$$$\mathrm{are}\:\mathrm{1},\mathrm{5},\mathrm{7},\mathrm{11}. \\ $$

Commented by prakash jain last updated on 22/May/17

This will be sufficient condition  for p^2  mod n=1.  Can be considered necessary if we  assume that for m<n where  HCF(m,n)=1 there exists at  least one prime of the form  ln+m  where (l,m,n) are natural numbers.

$$\mathrm{This}\:\mathrm{will}\:\mathrm{be}\:\mathrm{sufficient}\:\mathrm{condition} \\ $$$$\mathrm{for}\:{p}^{\mathrm{2}} \:\mathrm{mod}\:{n}=\mathrm{1}. \\ $$$$\mathrm{Can}\:\mathrm{be}\:\mathrm{considered}\:\mathrm{necessary}\:\mathrm{if}\:\mathrm{we} \\ $$$$\mathrm{assume}\:\mathrm{that}\:\mathrm{for}\:{m}<{n}\:\mathrm{where} \\ $$$$\mathrm{HCF}\left({m},{n}\right)=\mathrm{1}\:\mathrm{there}\:\mathrm{exists}\:\mathrm{at} \\ $$$$\mathrm{least}\:\mathrm{one}\:\mathrm{prime}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form} \\ $$$${ln}+{m}\:\:\mathrm{where}\:\left({l},{m},{n}\right)\:\mathrm{are}\:\mathrm{natural}\:\mathrm{numbers}. \\ $$

Commented by mrW1 last updated on 23/May/17

For m such that all prime numbers  can be expressed as p=mk±1, I think  there are only following possibilities:  m=2: p=2k±1 ⇒n=4  m=4: p=4k±1 ⇒n=8  m=6: p=6k±1 ⇒n=12

$${For}\:{m}\:{such}\:{that}\:{all}\:{prime}\:{numbers} \\ $$$${can}\:{be}\:{expressed}\:{as}\:{p}={mk}\pm\mathrm{1},\:{I}\:{think} \\ $$$${there}\:{are}\:{only}\:{following}\:{possibilities}: \\ $$$${m}=\mathrm{2}:\:{p}=\mathrm{2}{k}\pm\mathrm{1}\:\Rightarrow{n}=\mathrm{4} \\ $$$${m}=\mathrm{4}:\:{p}=\mathrm{4}{k}\pm\mathrm{1}\:\Rightarrow{n}=\mathrm{8} \\ $$$${m}=\mathrm{6}:\:{p}=\mathrm{6}{k}\pm\mathrm{1}\:\Rightarrow{n}=\mathrm{12} \\ $$

Commented by prakash jain last updated on 23/May/17

Yes. For any number n we can   express all primes as  mn+k where HCF(k,n)=1,k<n  (mn+k)^2  mod n=k^2  mod n  n=12⇒k=1,5,7,11  5^2 ≡1 (mod 12)  7^2 ≡1 (mod 12)   Now the question is to find n where  k^2  mod n=1 (HCF(k,n)=1,k<n)  (or to prove that no such n exist).

$$\mathrm{Yes}.\:\mathrm{For}\:\mathrm{any}\:\mathrm{number}\:{n}\:\mathrm{we}\:\mathrm{can}\: \\ $$$$\mathrm{express}\:\mathrm{all}\:\mathrm{primes}\:\mathrm{as} \\ $$$${mn}+{k}\:\mathrm{where}\:\mathrm{HCF}\left({k},{n}\right)=\mathrm{1},{k}<{n} \\ $$$$\left({mn}+{k}\right)^{\mathrm{2}} \:\mathrm{mod}\:\mathrm{n}={k}^{\mathrm{2}} \:\mathrm{mod}\:{n} \\ $$$${n}=\mathrm{12}\Rightarrow{k}=\mathrm{1},\mathrm{5},\mathrm{7},\mathrm{11} \\ $$$$\mathrm{5}^{\mathrm{2}} \equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{12}\right) \\ $$$$\mathrm{7}^{\mathrm{2}} \equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{12}\right)\: \\ $$$$\mathrm{Now}\:\mathrm{the}\:\mathrm{question}\:\mathrm{is}\:\mathrm{to}\:\mathrm{find}\:{n}\:\mathrm{where} \\ $$$${k}^{\mathrm{2}} \:\mathrm{mod}\:{n}=\mathrm{1}\:\left(\mathrm{HCF}\left({k},{n}\right)=\mathrm{1},{k}<{n}\right) \\ $$$$\left(\mathrm{or}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{no}\:\mathrm{such}\:{n}\:\mathrm{exist}\right). \\ $$

Commented by prakash jain last updated on 23/May/17

continuing  k^2  mod n=1  k^2 =mn+1  k^2 −1=mn  (k−1)(k+1)=mn

$$\mathrm{continuing} \\ $$$${k}^{\mathrm{2}} \:\mathrm{mod}\:\mathrm{n}=\mathrm{1} \\ $$$${k}^{\mathrm{2}} ={mn}+\mathrm{1} \\ $$$${k}^{\mathrm{2}} −\mathrm{1}={mn} \\ $$$$\left({k}−\mathrm{1}\right)\left({k}+\mathrm{1}\right)={mn} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com