Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 99025 by joki last updated on 18/Jun/20

Commented by bobhans last updated on 18/Jun/20

set 2207−(1/(2207−(1/(2207−(1/(2207−...)))))) = q  2207−(1/q) = q ⇒q^2 −2207q+1=0  q= ((2207 ± (√(4870845)))/2) = ((2207 ± 2207)/2)  case(1) q = 2207 ⇒((2207−(1/(2207−(1/(2207−...))))))^(1/(8  )) = ((2207))^(1/(8   ))  ≈ 2.618034056

$$\mathrm{set}\:\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−...}}}\:=\:{q} \\ $$$$\mathrm{2207}−\frac{\mathrm{1}}{{q}}\:=\:{q}\:\Rightarrow{q}^{\mathrm{2}} −\mathrm{2207}{q}+\mathrm{1}=\mathrm{0} \\ $$$${q}=\:\frac{\mathrm{2207}\:\pm\:\sqrt{\mathrm{4870845}}}{\mathrm{2}}\:=\:\frac{\mathrm{2207}\:\pm\:\mathrm{2207}}{\mathrm{2}} \\ $$$$\mathrm{case}\left(\mathrm{1}\right)\:{q}\:=\:\mathrm{2207}\:\Rightarrow\sqrt[{\mathrm{8}\:\:}]{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−...}}}=\:\sqrt[{\mathrm{8}\:\:\:}]{\mathrm{2207}}\:\approx\:\mathrm{2}.\mathrm{618034056} \\ $$

Commented by joki last updated on 18/Jun/20

thanks sir

$${thanks}\:{sir} \\ $$

Commented by MJS last updated on 18/Jun/20

(√(4870845))≠2207 ⇒ answer is only an approximation

$$\sqrt{\mathrm{4870845}}\neq\mathrm{2207}\:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\mathrm{only}\:\mathrm{an}\:\mathrm{approximation} \\ $$

Commented by bobhans last updated on 18/Jun/20

yes sir. my answer is approximation

$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{my}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{approximation} \\ $$

Answered by bemath last updated on 18/Jun/20

let ((2207−(1/(2207−(1/(2207))−...))))^(1/(8  ))  = w  w^8  = 2207−(1/w^8 ) ⇒ w^(16)  −2207w^8  + 1=0

$$\mathrm{let}\:\sqrt[{\mathrm{8}\:\:}]{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}}−...}}\:=\:\mathrm{w} \\ $$$$\mathrm{w}^{\mathrm{8}} \:=\:\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{w}^{\mathrm{8}} }\:\Rightarrow\:\mathrm{w}^{\mathrm{16}} \:−\mathrm{2207w}^{\mathrm{8}} \:+\:\mathrm{1}=\mathrm{0} \\ $$

Commented by mr W last updated on 18/Jun/20

wrong sir!  should be  w^8  = 2207−(1/w^8 )

$${wrong}\:{sir}! \\ $$$${should}\:{be} \\ $$$$\mathrm{w}^{\mathrm{8}} \:=\:\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{w}^{\mathrm{8}} } \\ $$

Commented by joki last updated on 18/Jun/20

have done?what is the value w?

$${have}\:{done}?{what}\:{is}\:{the}\:{value}\:{w}? \\ $$

Commented by Rasheed.Sindhi last updated on 18/Jun/20

Sir bemath     I′ve tried to solve your q#98806  Please say something whether  it′s right or wrong.

$${Sir}\:{bemath} \\ $$$$\:\:\:{I}'{ve}\:{tried}\:{to}\:{solve}\:{your}\:{q}#\mathrm{98806} \\ $$$${Please}\:{say}\:{something}\:{whether} \\ $$$${it}'{s}\:{right}\:{or}\:{wrong}. \\ $$

Commented by bemath last updated on 18/Jun/20

sorry sir. i forgot. yes sir your answer   is correct

$$\mathrm{sorry}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{forgot}.\:\mathrm{yes}\:\mathrm{sir}\:\mathrm{your}\:\mathrm{answer}\: \\ $$$$\mathrm{is}\:\mathrm{correct} \\ $$

Commented by Rasheed.Sindhi last updated on 18/Jun/20

Thanx sir!

$${Thanx}\:{sir}! \\ $$

Answered by MJS last updated on 18/Jun/20

x=2207−(1/x)  x^2 −2207x+1=0  x=((2207±987(√5))/2); x≈2207 ⇒ x=((2207+987(√5))/2)  (x)^(1/8) =(√(√(√x)))  (√((2207+987(√5))/2))=((47+21(√5))/2)  (√((47+21(√5))/2))=((7+3(√5))/2)  (√((7+3(√5))/2))=((3+(√5))/2)

$${x}=\mathrm{2207}−\frac{\mathrm{1}}{{x}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2207}{x}+\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{2207}\pm\mathrm{987}\sqrt{\mathrm{5}}}{\mathrm{2}};\:{x}\approx\mathrm{2207}\:\Rightarrow\:{x}=\frac{\mathrm{2207}+\mathrm{987}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\sqrt[{\mathrm{8}}]{{x}}=\sqrt{\sqrt{\sqrt{{x}}}} \\ $$$$\sqrt{\frac{\mathrm{2207}+\mathrm{987}\sqrt{\mathrm{5}}}{\mathrm{2}}}=\frac{\mathrm{47}+\mathrm{21}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\sqrt{\frac{\mathrm{47}+\mathrm{21}\sqrt{\mathrm{5}}}{\mathrm{2}}}=\frac{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\sqrt{\frac{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}}=\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$ \\ $$

Commented by mr W last updated on 18/Jun/20

x=((2207−987(√5))/2) is also solution?

$${x}=\frac{\mathrm{2207}−\mathrm{987}\sqrt{\mathrm{5}}}{\mathrm{2}}\:{is}\:{also}\:{solution}? \\ $$

Commented by MJS last updated on 18/Jun/20

solution of the polynome, yes. but  ((2207−987(√5))/2)≠2207−(1/(2207−(1/(2207...))))

$$\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polynome},\:\mathrm{yes}.\:\mathrm{but} \\ $$$$\frac{\mathrm{2207}−\mathrm{987}\sqrt{\mathrm{5}}}{\mathrm{2}}\neq\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}...}} \\ $$

Commented by bobhans last updated on 18/Jun/20

great sir...

$$\mathrm{great}\:\mathrm{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com