Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 95604 by 174 last updated on 26/May/20

Commented by MJS last updated on 26/May/20

x^5 +1=(x+1)(x^2 −((1+(√5))/2)x+1)(x^2 −((1−(√5))/2)x+1)  decompose and solve.

$${x}^{\mathrm{5}} +\mathrm{1}=\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right) \\ $$$$\mathrm{decompose}\:\mathrm{and}\:\mathrm{solve}. \\ $$

Commented by peter frank last updated on 26/May/20

sir can show how to partialize  given equation of   decomposition.

$$\mathrm{sir}\:\mathrm{can}\:\mathrm{show}\:\mathrm{how}\:\mathrm{to}\:\mathrm{partialize} \\ $$$$\mathrm{given}\:\mathrm{equation}\:\mathrm{of}\: \\ $$$$\mathrm{decomposition}. \\ $$

Commented by Tony Lin last updated on 26/May/20

(−1)^5 +1=0  →x^5 +1=(x+1)(x^4 −x^3 +x^2 −x+1)  let x^4 −x^3 +x^2 −x+1  =(x^2 +ax+1)(x^2 +bx+1)  and solve a and b

$$\left(−\mathrm{1}\right)^{\mathrm{5}} +\mathrm{1}=\mathrm{0} \\ $$$$\rightarrow{x}^{\mathrm{5}} +\mathrm{1}=\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{4}} −{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$$${let}\:{x}^{\mathrm{4}} −{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −{x}+\mathrm{1} \\ $$$$=\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +{bx}+\mathrm{1}\right) \\ $$$${and}\:{solve}\:{a}\:{and}\:{b} \\ $$

Answered by mathmax by abdo last updated on 27/May/20

at form of serie I =∫_0 ^1  (Σ_(n=0) ^∞ (−1)^n  x^(5n) )dx  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  x^(5n)  dx =Σ_(n=0) ^∞  (((−1)^n )/(5n+1))  =1−(1/6) +(1/(11))−(1/(16)) +(1/(21)) −....

$$\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie}\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{x}^{\mathrm{5n}} \right)\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{5n}} \:\mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{5n}+\mathrm{1}} \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}}\:+\frac{\mathrm{1}}{\mathrm{11}}−\frac{\mathrm{1}}{\mathrm{16}}\:+\frac{\mathrm{1}}{\mathrm{21}}\:−.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com