Question Number 94406 by Power last updated on 18/May/20 | ||
![]() | ||
Commented by Tony Lin last updated on 18/May/20 | ||
![]() | ||
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!}={e}^{{x}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{3}^{{n}} }{{n}!}={e}^{\mathrm{3}} \\ $$ | ||
Commented by Power last updated on 18/May/20 | ||
![]() | ||
$$\mathrm{sir}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{please} \\ $$ | ||
Commented by prakash jain last updated on 18/May/20 | ||
![]() | ||
$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\ $$$$\mathrm{puy}\:{x}=\mathrm{3}\:\mathrm{and}\:\mathrm{you}\:\mathrm{will}\:\mathrm{get}\:\mathrm{answer}. \\ $$ | ||
Commented by prakash jain last updated on 18/May/20 | ||
![]() | ||
$$\mathrm{proof}\:\mathrm{for}\:{e}^{{x}} \:\mathrm{series}? \\ $$ | ||
Commented by MAB last updated on 18/May/20 | ||
![]() | ||
$${it}'{s}\:{the}\:{taylor}\:{series}\:{for}\:{e}^{{x}\:} \:{at}\:\:\mathrm{0} \\ $$ | ||