Question Number 92772 by Power last updated on 09/May/20 | ||
Commented by mathmax by abdo last updated on 09/May/20 | ||
$${A}\:=\int_{\mathrm{0}} ^{\mathrm{6}} \:\left[{x}\right]\:{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){dx}\:\Rightarrow\:{A}\:=\sum_{{k}=\mathrm{0}} ^{\mathrm{5}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:{k}\:{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{5}} \:{k}\:\int_{{k}} ^{{k}+\mathrm{1}} \:{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{5}} \:{k}\:\left[−\frac{\mathrm{6}}{\pi}{cos}\left(\frac{\pi{x}}{\mathrm{6}}\right)\right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=−\frac{\mathrm{6}}{\pi}\:\sum_{{k}=\mathrm{0}} ^{\mathrm{5}} {k}\left\{\:{cos}\left(\frac{\pi\left({k}+\mathrm{1}\right)}{\mathrm{6}}\right)−{cos}\left(\frac{{k}\pi}{\mathrm{6}}\right)\right\} \\ $$$$=−\frac{\mathrm{6}}{\pi}\left(\:\:{cos}\left(\frac{\pi}{\mathrm{3}}\right)−{cos}\left(\frac{\pi}{\mathrm{6}}\right)+{cos}\left(\frac{\pi}{\mathrm{2}}\right)−{cos}\left(\frac{\pi}{\mathrm{3}}\right)+{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)−{cos}\left(\frac{\pi}{\mathrm{2}}\right)\right. \\ $$$$\left.+{cos}\left(\frac{\mathrm{5}\pi}{\mathrm{6}}\right)−{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:+{cos}\left(\pi\right)−{cos}\left(\frac{\mathrm{5}\pi}{\mathrm{6}}\right)\right) \\ $$$$=−\frac{\mathrm{6}}{\pi}\left\{−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:−\mathrm{1}\right\}\:=\frac{\mathrm{6}}{\pi}\left(\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:=\frac{\mathrm{6}}{\mathrm{2}\pi}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right) \\ $$ | ||