Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 88918 by mathocean1 last updated on 13/Apr/20

Commented by mathocean1 last updated on 13/Apr/20

Commented by mathocean1 last updated on 13/Apr/20

I precise that f ∃ ∀ x≠(1/2)

$$\mathrm{I}\:\mathrm{precise}\:\mathrm{that}\:\mathrm{f}\:\exists\:\forall\:\mathrm{x}\neq\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by mathmax by abdo last updated on 13/Apr/20

how to find f with this variation...!

$${how}\:{to}\:{find}\:{f}\:{with}\:{this}\:{variation}...! \\ $$

Commented by mathocean1 last updated on 14/Apr/20

i don′t also know

$$\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{also}\:\mathrm{know} \\ $$

Commented by MJS last updated on 14/Apr/20

f′(x)=0 at x=−1∧x=3       ⇒ (x+1)(x−3)  f′(x) is not defined at x=(1/2) and the sign       doesn′t change       ⇒ (1/((x−(1/2))^2 ))  ⇒  f′(x)=(((x+1)(x−3))/((x−(1/2))^2 ))×c_1   f(x)=∫f′(x)dx=c_1 (x+((15)/(4(x−(1/2))))−ln ∣2x−1∣)+c_2   now calculate c_1 , c_2  by solving   { ((f(−1)=(1/2))),((f(3)=2)) :}  ⇒  c_1 =(3/(2(8−ln 5 −ln 3))) ∧ c_2 =((37−2ln 5 −8ln 3)/(4(8−ln 5 −ln 3)))

$${f}'\left({x}\right)=\mathrm{0}\:\mathrm{at}\:{x}=−\mathrm{1}\wedge{x}=\mathrm{3} \\ $$$$\:\:\:\:\:\Rightarrow\:\left({x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right) \\ $$$${f}'\left({x}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{at}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sign} \\ $$$$\:\:\:\:\:\mathrm{doesn}'\mathrm{t}\:\mathrm{change} \\ $$$$\:\:\:\:\:\Rightarrow\:\frac{\mathrm{1}}{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow \\ $$$${f}'\left({x}\right)=\frac{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right)}{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }×{c}_{\mathrm{1}} \\ $$$${f}\left({x}\right)=\int{f}'\left({x}\right){dx}={c}_{\mathrm{1}} \left({x}+\frac{\mathrm{15}}{\mathrm{4}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)}−\mathrm{ln}\:\mid\mathrm{2}{x}−\mathrm{1}\mid\right)+{c}_{\mathrm{2}} \\ $$$$\mathrm{now}\:\mathrm{calculate}\:{c}_{\mathrm{1}} ,\:{c}_{\mathrm{2}} \:\mathrm{by}\:\mathrm{solving} \\ $$$$\begin{cases}{{f}\left(−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}}\\{{f}\left(\mathrm{3}\right)=\mathrm{2}}\end{cases} \\ $$$$\Rightarrow \\ $$$${c}_{\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}\left(\mathrm{8}−\mathrm{ln}\:\mathrm{5}\:−\mathrm{ln}\:\mathrm{3}\right)}\:\wedge\:{c}_{\mathrm{2}} =\frac{\mathrm{37}−\mathrm{2ln}\:\mathrm{5}\:−\mathrm{8ln}\:\mathrm{3}}{\mathrm{4}\left(\mathrm{8}−\mathrm{ln}\:\mathrm{5}\:−\mathrm{ln}\:\mathrm{3}\right)} \\ $$

Commented by mathocean1 last updated on 14/Apr/20

Please i dont know these characters:  ln ; ∫ and dx.  i′m till learner :) !

$$\mathrm{Please}\:\mathrm{i}\:\mathrm{dont}\:\mathrm{know}\:\mathrm{these}\:\mathrm{characters}: \\ $$$$\mathrm{ln}\:;\:\int\:\mathrm{and}\:\mathrm{d}{x}. \\ $$$$\left.{i}'\mathrm{m}\:\mathrm{till}\:\mathrm{learner}\::\right)\:! \\ $$

Commented by MJS last updated on 14/Apr/20

how come you have to solve a question like  this without knowing these symbols???  I cannot explain this within a comment, it  needs teaching for months

$$\mathrm{how}\:\mathrm{come}\:\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{a}\:\mathrm{question}\:\mathrm{like} \\ $$$$\mathrm{this}\:\mathrm{without}\:\mathrm{knowing}\:\mathrm{these}\:\mathrm{symbols}??? \\ $$$$\mathrm{I}\:\mathrm{cannot}\:\mathrm{explain}\:\mathrm{this}\:\mathrm{within}\:\mathrm{a}\:\mathrm{comment},\:\mathrm{it} \\ $$$$\mathrm{needs}\:\mathrm{teaching}\:\mathrm{for}\:\mathrm{months} \\ $$

Commented by mathocean1 last updated on 15/Apr/20

alright.

$$\mathrm{alright}. \\ $$

Commented by MJS last updated on 15/Apr/20

sorry I didn′t want to be impolite  I cannot see an easier path to solve this  problem. in Austria, we have 12 years of  school, you learn “ln” in the 10^(th)  year and  “∫dx” in the 12^(th)  year...  just to give you a picture

$$\mathrm{sorry}\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{want}\:\mathrm{to}\:\mathrm{be}\:\mathrm{impolite} \\ $$$$\mathrm{I}\:\mathrm{cannot}\:\mathrm{see}\:\mathrm{an}\:\mathrm{easier}\:\mathrm{path}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this} \\ $$$$\mathrm{problem}.\:\mathrm{in}\:\mathrm{Austria},\:\mathrm{we}\:\mathrm{have}\:\mathrm{12}\:\mathrm{years}\:\mathrm{of} \\ $$$$\mathrm{school},\:\mathrm{you}\:\mathrm{learn}\:``\mathrm{ln}''\:\mathrm{in}\:\mathrm{the}\:\mathrm{10}^{\mathrm{th}} \:\mathrm{year}\:\mathrm{and} \\ $$$$``\int{dx}''\:\mathrm{in}\:\mathrm{the}\:\mathrm{12}^{\mathrm{th}} \:\mathrm{year}... \\ $$$$\mathrm{just}\:\mathrm{to}\:\mathrm{give}\:\mathrm{you}\:\mathrm{a}\:\mathrm{picture} \\ $$

Commented by mathocean1 last updated on 08/Jun/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com