Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 86586 by Power last updated on 29/Mar/20

Commented by Power last updated on 29/Mar/20

(x_1 ^5 −20)(3x_2 ^4 −2x_2 −35)=?

$$\left(\mathrm{x}_{\mathrm{1}} ^{\mathrm{5}} −\mathrm{20}\right)\left(\mathrm{3x}_{\mathrm{2}} ^{\mathrm{4}} −\mathrm{2x}_{\mathrm{2}} −\mathrm{35}\right)=? \\ $$

Commented by MJS last updated on 29/Mar/20

−1063  just solve and calculate

$$−\mathrm{1063} \\ $$$$\mathrm{just}\:\mathrm{solve}\:\mathrm{and}\:\mathrm{calculate} \\ $$

Commented by jagoll last updated on 29/Mar/20

wow...super easy

$$\mathrm{wow}...\mathrm{super}\:\mathrm{easy} \\ $$

Commented by Power last updated on 29/Mar/20

prove that sir

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{sir} \\ $$

Answered by lémùst last updated on 29/Mar/20

x^2 =x+3⇒x^4 =x^2 +6x+9  ⇒x^4 =x+3+6x+9  ⇒x^4 =7x+12  ⇒x^5 =7x^2 +12x=7(x+3)+12x=19x+21    (x_1 ^5 −20)(3x_2 ^4 −2x_2 −35)  =(19x_1 +21−20)(21x_2 +36−2x_2 −35)  =(19x_1 +1)(19x_2 +1)  =19^2 x_1 x_2 +19(x_1 +x_2 )+1  =19^2 ×(−3)+19×1+1  =−1063

$${x}^{\mathrm{2}} ={x}+\mathrm{3}\Rightarrow{x}^{\mathrm{4}} ={x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9} \\ $$$$\Rightarrow{x}^{\mathrm{4}} ={x}+\mathrm{3}+\mathrm{6}{x}+\mathrm{9} \\ $$$$\Rightarrow{x}^{\mathrm{4}} =\mathrm{7}{x}+\mathrm{12} \\ $$$$\Rightarrow{x}^{\mathrm{5}} =\mathrm{7}{x}^{\mathrm{2}} +\mathrm{12}{x}=\mathrm{7}\left({x}+\mathrm{3}\right)+\mathrm{12}{x}=\mathrm{19}{x}+\mathrm{21} \\ $$$$ \\ $$$$\left({x}_{\mathrm{1}} ^{\mathrm{5}} −\mathrm{20}\right)\left(\mathrm{3}{x}_{\mathrm{2}} ^{\mathrm{4}} −\mathrm{2}{x}_{\mathrm{2}} −\mathrm{35}\right) \\ $$$$=\left(\mathrm{19}{x}_{\mathrm{1}} +\mathrm{21}−\mathrm{20}\right)\left(\mathrm{21}{x}_{\mathrm{2}} +\mathrm{36}−\mathrm{2}{x}_{\mathrm{2}} −\mathrm{35}\right) \\ $$$$=\left(\mathrm{19}{x}_{\mathrm{1}} +\mathrm{1}\right)\left(\mathrm{19}{x}_{\mathrm{2}} +\mathrm{1}\right) \\ $$$$=\mathrm{19}^{\mathrm{2}} {x}_{\mathrm{1}} {x}_{\mathrm{2}} +\mathrm{19}\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)+\mathrm{1} \\ $$$$=\mathrm{19}^{\mathrm{2}} ×\left(−\mathrm{3}\right)+\mathrm{19}×\mathrm{1}+\mathrm{1} \\ $$$$=−\mathrm{1063} \\ $$

Commented by Power last updated on 29/Mar/20

thanks

$$\mathrm{thanks} \\ $$

Commented by lémùst last updated on 29/Mar/20

you′re welcome

$${you}'{re}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com