Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 84655 by ajfour last updated on 14/Mar/20

Commented by ajfour last updated on 14/Mar/20

If area of △ABC  is equal to  max trapezium area BCED ,  find r in terms of ellipse   parameters a and b.

$${If}\:{area}\:{of}\:\bigtriangleup{ABC}\:\:{is}\:{equal}\:{to} \\ $$$${max}\:{trapezium}\:{area}\:{BCED}\:, \\ $$$${find}\:{r}\:{in}\:{terms}\:{of}\:{ellipse}\: \\ $$$${parameters}\:{a}\:{and}\:{b}. \\ $$

Answered by mr W last updated on 15/Mar/20

Commented by mr W last updated on 15/Mar/20

let α=cos^(−1) (h/b)  BC=2a sin α  [BCED]_(max) =((ab)/2)[3 sin (((2α)/3))−sin (2α)]  [ABC]=a(b+h) sin α  ((ab)/2)[3 sin (((2α)/3))−sin (2α)]=a(b+h) sin α  3 sin (((2α)/3))−sin (2α)=2(1+(h/b)) sin α  let λ=(h/b)  ⇒α=cos^(−1) λ  ⇒3 sin (((2α)/3))=2(2λ+1) sin α  ⇒λ≈0.121555    AC=(√(a^2 (1−λ^2 )+b^2 (1+λ)^2 ))  ab(1+λ) sin α=r(a sin α+(√(a^2 (1−λ^2 )+b^2 (1+λ)^2 ))  b(1+λ)=r[1+(√(1+(((1+λ)b^2 )/((1−λ)a^2 ))))]  ⇒(r/b)=((1+λ)/(1+(√(1+(((1+λ)b^2 )/((1−λ)a^2 ))))))  examples:  (b/a)=1 ⇒(r/b)=0.447032  (b/a)=(2/3) ⇒(r/b)=0.498031  (b/a)=(1/2) ⇒(r/b)=0.522003  (b/a)=2 ⇒(r/b)=0.323100

$${let}\:\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{{h}}{{b}} \\ $$$${BC}=\mathrm{2}{a}\:\mathrm{sin}\:\alpha \\ $$$$\left[{BCED}\right]_{{max}} =\frac{{ab}}{\mathrm{2}}\left[\mathrm{3}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\alpha}{\mathrm{3}}\right)−\mathrm{sin}\:\left(\mathrm{2}\alpha\right)\right] \\ $$$$\left[{ABC}\right]={a}\left({b}+{h}\right)\:\mathrm{sin}\:\alpha \\ $$$$\frac{{ab}}{\mathrm{2}}\left[\mathrm{3}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\alpha}{\mathrm{3}}\right)−\mathrm{sin}\:\left(\mathrm{2}\alpha\right)\right]={a}\left({b}+{h}\right)\:\mathrm{sin}\:\alpha \\ $$$$\mathrm{3}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\alpha}{\mathrm{3}}\right)−\mathrm{sin}\:\left(\mathrm{2}\alpha\right)=\mathrm{2}\left(\mathrm{1}+\frac{{h}}{{b}}\right)\:\mathrm{sin}\:\alpha \\ $$$${let}\:\lambda=\frac{{h}}{{b}} \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \lambda \\ $$$$\Rightarrow\mathrm{3}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\alpha}{\mathrm{3}}\right)=\mathrm{2}\left(\mathrm{2}\lambda+\mathrm{1}\right)\:\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\lambda\approx\mathrm{0}.\mathrm{121555} \\ $$$$ \\ $$$${AC}=\sqrt{{a}^{\mathrm{2}} \left(\mathrm{1}−\lambda^{\mathrm{2}} \right)+{b}^{\mathrm{2}} \left(\mathrm{1}+\lambda\right)^{\mathrm{2}} } \\ $$$${ab}\left(\mathrm{1}+\lambda\right)\:\mathrm{sin}\:\alpha={r}\left({a}\:\mathrm{sin}\:\alpha+\sqrt{{a}^{\mathrm{2}} \left(\mathrm{1}−\lambda^{\mathrm{2}} \right)+{b}^{\mathrm{2}} \left(\mathrm{1}+\lambda\right)^{\mathrm{2}} }\right. \\ $$$${b}\left(\mathrm{1}+\lambda\right)={r}\left[\mathrm{1}+\sqrt{\mathrm{1}+\frac{\left(\mathrm{1}+\lambda\right){b}^{\mathrm{2}} }{\left(\mathrm{1}−\lambda\right){a}^{\mathrm{2}} }}\right] \\ $$$$\Rightarrow\frac{{r}}{{b}}=\frac{\mathrm{1}+\lambda}{\mathrm{1}+\sqrt{\mathrm{1}+\frac{\left(\mathrm{1}+\lambda\right){b}^{\mathrm{2}} }{\left(\mathrm{1}−\lambda\right){a}^{\mathrm{2}} }}} \\ $$$${examples}: \\ $$$$\frac{{b}}{{a}}=\mathrm{1}\:\Rightarrow\frac{{r}}{{b}}=\mathrm{0}.\mathrm{447032} \\ $$$$\frac{{b}}{{a}}=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\frac{{r}}{{b}}=\mathrm{0}.\mathrm{498031} \\ $$$$\frac{{b}}{{a}}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\frac{{r}}{{b}}=\mathrm{0}.\mathrm{522003} \\ $$$$\frac{{b}}{{a}}=\mathrm{2}\:\Rightarrow\frac{{r}}{{b}}=\mathrm{0}.\mathrm{323100} \\ $$

Commented by ajfour last updated on 15/Mar/20

Sir i couldn′t get your logic for  [BCED]_(max)  , kindly enlighten..

$${Sir}\:{i}\:{couldn}'{t}\:{get}\:{your}\:{logic}\:{for} \\ $$$$\left[{BCED}\right]_{{max}} \:,\:{kindly}\:{enlighten}.. \\ $$

Commented by mr W last updated on 15/Mar/20

Commented by mr W last updated on 15/Mar/20

when wir shrink the ellipse in x−  direction in ratio (b/a) to a circle, the  ratio of the areas from the triangle  ABC to trapezium BCED remains  unchanged, i.e.  (([ABC])/([BCED]))=(([AB′C′])/([B′C′E′D′]))  for the circle with radius b, the  trapezium B′C′E′D′ is maximum,  when B′D′=D′E′=E′C′ (proof omitted).    cos α=(h/b) ⇒α=cos^(−1) (h/b)  β=((2α)/3)  [B′C′E′D′]_(max) =3×((b^2  sin β)/2)−((b^2  sin 2α)/2)  =(b^2 /2)[3 sin (((2α)/3))−sin 2α]  [BCED]_(max) =(a/b)×[B′C′E′D′]_(max)   =((ab)/2)(3 sin (((2α)/3))−sin 2α)    B′C′=2b sin α  BC=(a/b)×B′C′=2a sin α

$${when}\:{wir}\:{shrink}\:{the}\:{ellipse}\:{in}\:{x}− \\ $$$${direction}\:{in}\:{ratio}\:\frac{{b}}{{a}}\:{to}\:{a}\:{circle},\:{the} \\ $$$${ratio}\:{of}\:{the}\:{areas}\:{from}\:{the}\:{triangle} \\ $$$${ABC}\:{to}\:{trapezium}\:{BCED}\:{remains} \\ $$$${unchanged},\:{i}.{e}. \\ $$$$\frac{\left[{ABC}\right]}{\left[{BCED}\right]}=\frac{\left[{AB}'{C}'\right]}{\left[{B}'{C}'{E}'{D}'\right]} \\ $$$${for}\:{the}\:{circle}\:{with}\:{radius}\:{b},\:{the} \\ $$$${trapezium}\:{B}'{C}'{E}'{D}'\:{is}\:{maximum}, \\ $$$${when}\:{B}'{D}'={D}'{E}'={E}'{C}'\:\left({proof}\:{omitted}\right). \\ $$$$ \\ $$$$\mathrm{cos}\:\alpha=\frac{{h}}{{b}}\:\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{{h}}{{b}} \\ $$$$\beta=\frac{\mathrm{2}\alpha}{\mathrm{3}} \\ $$$$\left[{B}'{C}'{E}'{D}'\right]_{{max}} =\mathrm{3}×\frac{{b}^{\mathrm{2}} \:\mathrm{sin}\:\beta}{\mathrm{2}}−\frac{{b}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{2}} \\ $$$$=\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\left[\mathrm{3}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\alpha}{\mathrm{3}}\right)−\mathrm{sin}\:\mathrm{2}\alpha\right] \\ $$$$\left[{BCED}\right]_{{max}} =\frac{{a}}{{b}}×\left[{B}'{C}'{E}'{D}'\right]_{{max}} \\ $$$$=\frac{{ab}}{\mathrm{2}}\left(\mathrm{3}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\alpha}{\mathrm{3}}\right)−\mathrm{sin}\:\mathrm{2}\alpha\right) \\ $$$$ \\ $$$${B}'{C}'=\mathrm{2}{b}\:\mathrm{sin}\:\alpha \\ $$$${BC}=\frac{{a}}{{b}}×{B}'{C}'=\mathrm{2}{a}\:\mathrm{sin}\:\alpha \\ $$

Commented by ajfour last updated on 15/Mar/20

Thanks sir for the explanation,  i shall be thoroughly through it  by tomorrow..

$${Thanks}\:{sir}\:{for}\:{the}\:{explanation}, \\ $$$${i}\:{shall}\:{be}\:{thoroughly}\:{through}\:{it} \\ $$$${by}\:{tomorrow}.. \\ $$

Answered by ajfour last updated on 15/Mar/20

C(acos θ, −bsin θ)  ;   E(acos φ, −bsin φ).  say  △_(ABC) =S   ,  Area_(BCED) =T  S=T  and  (∂T/∂φ)=0   gives  cos (φ−θ)+cos 2φ−sin 2θ                        +sin (φ−θ)=0   &  sin (φ−θ)+((sin 2φ)/2)−sin 2θ−cos θ=0  but i know not how to obtain  θ and φ from these two eqs. Sir..

$${C}\left({a}\mathrm{cos}\:\theta,\:−{b}\mathrm{sin}\:\theta\right)\:\:;\: \\ $$$${E}\left({a}\mathrm{cos}\:\phi,\:−{b}\mathrm{sin}\:\phi\right). \\ $$$${say}\:\:\bigtriangleup_{{ABC}} ={S}\:\:\:,\:\:{Area}_{{BCED}} ={T} \\ $$$${S}={T}\:\:{and}\:\:\frac{\partial{T}}{\partial\phi}=\mathrm{0}\:\:\:{gives} \\ $$$$\mathrm{cos}\:\left(\phi−\theta\right)+\mathrm{cos}\:\mathrm{2}\phi−\mathrm{sin}\:\mathrm{2}\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{sin}\:\left(\phi−\theta\right)=\mathrm{0}\:\:\:\& \\ $$$$\mathrm{sin}\:\left(\phi−\theta\right)+\frac{\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{2}}−\mathrm{sin}\:\mathrm{2}\theta−\mathrm{cos}\:\theta=\mathrm{0} \\ $$$${but}\:{i}\:{know}\:{not}\:{how}\:{to}\:{obtain} \\ $$$$\theta\:{and}\:\phi\:{from}\:{these}\:{two}\:{eqs}.\:{Sir}.. \\ $$

Commented by mr W last updated on 16/Mar/20

A=ab cos θ (1+sin θ)  S=ab(cos θ+cos φ)(sin φ−sin θ)    (dS/dφ)=0  (cos θ+cos φ)cos φ−sin φ (sin φ−sin θ)=0  cos θ cos φ+cos^2  φ+sin φ sin θ−sin^2  φ=0  ⇒cos (φ−θ)+cos 2φ=0  ⇒φ−θ+2φ=π  ⇒φ=((π+θ)/3)    A=S  cos θ (1+sin θ)=(cos θ+cos φ)(sin φ−sin θ)  cos θ+sin θ cos θ=sin φ cos θ+cos φ sin φ−sin θ cos θ−cos φ sin θ  sin (φ−θ)+((sin 2φ)/2)−sin 2θ−cos θ=0  sin (((π−2θ)/3))+(1/2)sin (((2π+2θ)/3))−sin 2θ−cos θ=0  ⇒(3/2)sin (((π−2θ)/3))−sin 2θ−cos θ=0  ⇒θ≈6.981874°  ⇒(h/b)=sin θ≈0.121555  (=λ)

$${A}={ab}\:\mathrm{cos}\:\theta\:\left(\mathrm{1}+\mathrm{sin}\:\theta\right) \\ $$$${S}={ab}\left(\mathrm{cos}\:\theta+\mathrm{cos}\:\phi\right)\left(\mathrm{sin}\:\phi−\mathrm{sin}\:\theta\right) \\ $$$$ \\ $$$$\frac{{dS}}{{d}\phi}=\mathrm{0} \\ $$$$\left(\mathrm{cos}\:\theta+\mathrm{cos}\:\phi\right)\mathrm{cos}\:\phi−\mathrm{sin}\:\phi\:\left(\mathrm{sin}\:\phi−\mathrm{sin}\:\theta\right)=\mathrm{0} \\ $$$$\mathrm{cos}\:\theta\:\mathrm{cos}\:\phi+\mathrm{cos}^{\mathrm{2}} \:\phi+\mathrm{sin}\:\phi\:\mathrm{sin}\:\theta−\mathrm{sin}^{\mathrm{2}} \:\phi=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\left(\phi−\theta\right)+\mathrm{cos}\:\mathrm{2}\phi=\mathrm{0} \\ $$$$\Rightarrow\phi−\theta+\mathrm{2}\phi=\pi \\ $$$$\Rightarrow\phi=\frac{\pi+\theta}{\mathrm{3}} \\ $$$$ \\ $$$${A}={S} \\ $$$$\mathrm{cos}\:\theta\:\left(\mathrm{1}+\mathrm{sin}\:\theta\right)=\left(\mathrm{cos}\:\theta+\mathrm{cos}\:\phi\right)\left(\mathrm{sin}\:\phi−\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta=\mathrm{sin}\:\phi\:\mathrm{cos}\:\theta+\mathrm{cos}\:\phi\:\mathrm{sin}\:\phi−\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta−\mathrm{cos}\:\phi\:\mathrm{sin}\:\theta \\ $$$$\mathrm{sin}\:\left(\phi−\theta\right)+\frac{\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{2}}−\mathrm{sin}\:\mathrm{2}\theta−\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\mathrm{sin}\:\left(\frac{\pi−\mathrm{2}\theta}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\left(\frac{\mathrm{2}\pi+\mathrm{2}\theta}{\mathrm{3}}\right)−\mathrm{sin}\:\mathrm{2}\theta−\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{3}}{\mathrm{2}}\mathrm{sin}\:\left(\frac{\pi−\mathrm{2}\theta}{\mathrm{3}}\right)−\mathrm{sin}\:\mathrm{2}\theta−\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\theta\approx\mathrm{6}.\mathrm{981874}° \\ $$$$\Rightarrow\frac{{h}}{{b}}=\mathrm{sin}\:\theta\approx\mathrm{0}.\mathrm{121555}\:\:\left(=\lambda\right) \\ $$

Commented by mr W last updated on 16/Mar/20

the result is the same as mine.

$${the}\:{result}\:{is}\:{the}\:{same}\:{as}\:{mine}. \\ $$

Commented by ajfour last updated on 16/Mar/20

Thank you sir, beautifully  handled!

$${Thank}\:{you}\:{sir},\:{beautifully} \\ $$$${handled}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com