Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 84420 by Power last updated on 12/Mar/20

Commented by Power last updated on 12/Mar/20

prove it

$$\mathrm{prove}\:\mathrm{it} \\ $$

Commented by Power last updated on 12/Mar/20

(a/b)+(b/c)+(c/a)+3≥(√a)+(√b)+(√c)

$$\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}}+\mathrm{3}\geqslant\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}} \\ $$

Answered by mind is power last updated on 12/Mar/20

(a/b)+(b/c)+(c/a)+3≥(√a)+(√b)+(√c)  (a/b)+(b/c)+(c/a)+(1/4)(a+b+c)=(a/b)+(b/4)+(b/c)+(c/4)+(c/a)+(a/4)   AM−GM⇒(a/b)+(b/4)≥2(√((a/b).(b/4)))=(√a)  (b/c)+(c/4)≥(√b),(c/a)+(a/4)≥(√c)⇒  (a/b)+(b/c)+(c/a)+((a+b+c)/4)≥(√a)+(√b)+(√c)  ⇔(a/b)+(b/c)+(c/a)+3≥(√a)+(√b)+(√c)  condition is (a,b,c)∈R_+ ^3 ∣a+b+c=12 not ∈N only

$$\frac{{a}}{{b}}+\frac{{b}}{{c}}+\frac{{c}}{{a}}+\mathrm{3}\geqslant\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}} \\ $$$$\frac{{a}}{{b}}+\frac{{b}}{{c}}+\frac{{c}}{{a}}+\frac{\mathrm{1}}{\mathrm{4}}\left({a}+{b}+{c}\right)=\frac{{a}}{{b}}+\frac{{b}}{\mathrm{4}}+\frac{{b}}{{c}}+\frac{{c}}{\mathrm{4}}+\frac{{c}}{{a}}+\frac{{a}}{\mathrm{4}}\: \\ $$$${AM}−{GM}\Rightarrow\frac{{a}}{{b}}+\frac{{b}}{\mathrm{4}}\geqslant\mathrm{2}\sqrt{\frac{{a}}{{b}}.\frac{{b}}{\mathrm{4}}}=\sqrt{{a}} \\ $$$$\frac{{b}}{{c}}+\frac{{c}}{\mathrm{4}}\geqslant\sqrt{{b}},\frac{{c}}{{a}}+\frac{{a}}{\mathrm{4}}\geqslant\sqrt{{c}}\Rightarrow \\ $$$$\frac{{a}}{{b}}+\frac{{b}}{{c}}+\frac{{c}}{{a}}+\frac{{a}+{b}+{c}}{\mathrm{4}}\geqslant\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}} \\ $$$$\Leftrightarrow\frac{{a}}{{b}}+\frac{{b}}{{c}}+\frac{{c}}{{a}}+\mathrm{3}\geqslant\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}} \\ $$$${condition}\:{is}\:\left({a},{b},{c}\right)\in\mathbb{R}_{+} ^{\mathrm{3}} \mid{a}+{b}+{c}=\mathrm{12}\:{not}\:\in\mathbb{N}\:{only} \\ $$

Commented by Power last updated on 13/Mar/20

thanks

$$\mathrm{thanks} \\ $$

Commented by mind is power last updated on 13/Mar/20

pleasur

$${pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com