Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 81674 by Power last updated on 14/Feb/20

Commented by Tony Lin last updated on 14/Feb/20

let y=7−x^2   x+(7−x^2 )^2 =11  x+(x^4 −14x^2 +49)−11=0  x^4 −14x^2 +x+38=0  (x−2)(x^3 +2x^2 −10x−19)=0  x^3 +2x^2 −10x−19=0  ⇒ { ((x_1 ≈−3.2832, y_1 ≈−3.7794)),((x_2 ≈−1.8481, y_2 ≈3.5845)),((x_3 ≈3.1313, y_3 ≈−2.8050)) :}  (you can use IVT to evaluate the value)  of course x_4 =2 and y_4 =3

$${let}\:{y}=\mathrm{7}−{x}^{\mathrm{2}} \\ $$$${x}+\left(\mathrm{7}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{11} \\ $$$${x}+\left({x}^{\mathrm{4}} −\mathrm{14}{x}^{\mathrm{2}} +\mathrm{49}\right)−\mathrm{11}=\mathrm{0} \\ $$$${x}^{\mathrm{4}} −\mathrm{14}{x}^{\mathrm{2}} +{x}+\mathrm{38}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} −\mathrm{10}{x}−\mathrm{19}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} −\mathrm{10}{x}−\mathrm{19}=\mathrm{0} \\ $$$$\Rightarrow\begin{cases}{{x}_{\mathrm{1}} \approx−\mathrm{3}.\mathrm{2832},\:{y}_{\mathrm{1}} \approx−\mathrm{3}.\mathrm{7794}}\\{{x}_{\mathrm{2}} \approx−\mathrm{1}.\mathrm{8481},\:{y}_{\mathrm{2}} \approx\mathrm{3}.\mathrm{5845}}\\{{x}_{\mathrm{3}} \approx\mathrm{3}.\mathrm{1313},\:{y}_{\mathrm{3}} \approx−\mathrm{2}.\mathrm{8050}}\end{cases} \\ $$$$\left({you}\:{can}\:{use}\:{IVT}\:{to}\:{evaluate}\:{the}\:{value}\right) \\ $$$${of}\:{course}\:{x}_{\mathrm{4}} =\mathrm{2}\:{and}\:{y}_{\mathrm{4}} =\mathrm{3}\: \\ $$

Commented by mr W last updated on 14/Feb/20

y=7−x^2   x+(7−x^2 )^2 =11  x^4 −14x^2 +x+38=0  (x−2)(x^3 +2x^2 −10x−19)=0  x−2=0 ⇒x=2 ⇒y=3  x^3 +2x^2 −10x−19=0  let x=s−(2/3)  ⇒s^3 −((34)/3)s−((317)/(27))=0  Δ=(−((34)/9))^3 +(−((317)/(54)))^2 <0  s=((2(√(34)))/3) sin (−(1/3)sin^(−1) ((317(√(34)))/(2312))+((2kπ)/3))  ⇒x=−(2/3)+((2(√(34)))/3) sin (−(1/3)sin^(−1) ((317(√(34)))/(2312))+((2kπ)/3))  ⇒x=−1.848126 ⇒y=3.584427  ⇒x=3.131313 ⇒y=−2.805118  ⇒x=−3.283186 ⇒y=−3.779319

$${y}=\mathrm{7}−{x}^{\mathrm{2}} \\ $$$${x}+\left(\mathrm{7}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{11} \\ $$$${x}^{\mathrm{4}} −\mathrm{14}{x}^{\mathrm{2}} +{x}+\mathrm{38}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} −\mathrm{10}{x}−\mathrm{19}\right)=\mathrm{0} \\ $$$${x}−\mathrm{2}=\mathrm{0}\:\Rightarrow{x}=\mathrm{2}\:\Rightarrow{y}=\mathrm{3} \\ $$$${x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} −\mathrm{10}{x}−\mathrm{19}=\mathrm{0} \\ $$$${let}\:{x}={s}−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow{s}^{\mathrm{3}} −\frac{\mathrm{34}}{\mathrm{3}}{s}−\frac{\mathrm{317}}{\mathrm{27}}=\mathrm{0} \\ $$$$\Delta=\left(−\frac{\mathrm{34}}{\mathrm{9}}\right)^{\mathrm{3}} +\left(−\frac{\mathrm{317}}{\mathrm{54}}\right)^{\mathrm{2}} <\mathrm{0} \\ $$$${s}=\frac{\mathrm{2}\sqrt{\mathrm{34}}}{\mathrm{3}}\:\mathrm{sin}\:\left(−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{317}\sqrt{\mathrm{34}}}{\mathrm{2312}}+\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow{x}=−\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{2}\sqrt{\mathrm{34}}}{\mathrm{3}}\:\mathrm{sin}\:\left(−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{317}\sqrt{\mathrm{34}}}{\mathrm{2312}}+\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow{x}=−\mathrm{1}.\mathrm{848126}\:\Rightarrow{y}=\mathrm{3}.\mathrm{584427} \\ $$$$\Rightarrow{x}=\mathrm{3}.\mathrm{131313}\:\Rightarrow{y}=−\mathrm{2}.\mathrm{805118} \\ $$$$\Rightarrow{x}=−\mathrm{3}.\mathrm{283186}\:\Rightarrow{y}=−\mathrm{3}.\mathrm{779319} \\ $$

Commented by Power last updated on 14/Feb/20

thanks

$$\mathrm{thanks} \\ $$

Answered by Prithwish Sen 1 last updated on 14/Feb/20

x=2  y=3

$${x}=\mathrm{2} \\ $$$${y}=\mathrm{3} \\ $$

Commented by Power last updated on 14/Feb/20

solve sir  proved

$$\mathrm{solve}\:\mathrm{sir}\:\:\mathrm{proved} \\ $$

Answered by behi83417@gmail.com last updated on 14/Feb/20

(x^2 −4)+(y−3)=0  (x−2)+(y^2 −9)=0  ⇒ { (((x−2)(x+2)+(y−3)=0)),(((x−2)+(y−3)(y+3)=0)) :}  ⇒ { (((x−2)−(x−2)(x+2)(y+3)=0)),((⇒(x−2)[1−(x+2)(y+3)]=0)) :}  ⇒[x−2=0,y^2 =11−2=9⇒y=±3]

$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)+\left(\mathrm{y}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\left(\mathrm{x}−\mathrm{2}\right)+\left(\mathrm{y}^{\mathrm{2}} −\mathrm{9}\right)=\mathrm{0} \\ $$$$\Rightarrow\begin{cases}{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}+\mathrm{2}\right)+\left(\mathrm{y}−\mathrm{3}\right)=\mathrm{0}}\\{\left(\mathrm{x}−\mathrm{2}\right)+\left(\mathrm{y}−\mathrm{3}\right)\left(\mathrm{y}+\mathrm{3}\right)=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{\left(\mathrm{x}−\mathrm{2}\right)−\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{y}+\mathrm{3}\right)=\mathrm{0}}\\{\Rightarrow\left(\mathrm{x}−\mathrm{2}\right)\left[\mathrm{1}−\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{y}+\mathrm{3}\right)\right]=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\left[\mathrm{x}−\mathrm{2}=\mathrm{0},\mathrm{y}^{\mathrm{2}} =\mathrm{11}−\mathrm{2}=\mathrm{9}\Rightarrow\mathrm{y}=\pm\mathrm{3}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com