| 
 | ||
| Question Number 79177 by TawaTawa last updated on 23/Jan/20 | ||
|  | ||
| Answered by mr W last updated on 23/Jan/20 | ||
| =((L^2 +[d]^2 )/([c]))  ⇒[b]=(M/T), e.g. (kg/s)  ⇒[d]=L, e.g. (m)  ⇒[c]=(L^2 /((ML)/T^2 ))=((LT^2 )/M), e.g. (ms^2 /kg)](Q79188.png) | ||
| $${M}\frac{{L}}{{T}^{\mathrm{2}} }=\left[{b}\right]\frac{{L}}{{T}}=\frac{{L}^{\mathrm{2}} +\left[{d}\right]^{\mathrm{2}} }{\left[{c}\right]} \\ $$$$\Rightarrow\left[{b}\right]=\frac{{M}}{{T}},\:{e}.{g}.\:\left({kg}/{s}\right) \\ $$$$\Rightarrow\left[{d}\right]={L},\:{e}.{g}.\:\left({m}\right) \\ $$$$\Rightarrow\left[{c}\right]=\frac{{L}^{\mathrm{2}} }{\frac{{ML}}{{T}^{\mathrm{2}} }}=\frac{{LT}^{\mathrm{2}} }{{M}},\:{e}.{g}.\:\left({ms}^{\mathrm{2}} /{kg}\right) \\ $$ | ||
| Commented by TawaTawa last updated on 23/Jan/20 | ||
|  | ||
| $$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||