Question Number 78496 by TawaTawa last updated on 18/Jan/20 | ||
Commented by mathmax by abdo last updated on 18/Jan/20 | ||
$${miss}\:{tawa}\:{are}\:{a}\:{theatcher}\:{or}\:{engineer}... \\ $$ | ||
Commented by TawaTawa last updated on 18/Jan/20 | ||
$$\mathrm{Engineer}\:\mathrm{sir}. \\ $$ | ||
Commented by mathmax by abdo last updated on 18/Jan/20 | ||
$${oh}\:{good}\:{job}\:{miss}\:{tawa}..\:{wich}\:{you}\:{goud}\:{luck}\:... \\ $$ | ||
Commented by TawaTawa last updated on 19/Jan/20 | ||
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir},\:\:\mathrm{i}\:\mathrm{appreciate}. \\ $$ | ||
Answered by mr W last updated on 18/Jan/20 | ||
$${ma}=−{mg}−{Kmv} \\ $$$${a}=−{g}−{Kv} \\ $$$${v}\frac{{dv}}{{dh}}=−{g}−{Kv} \\ $$$$\frac{{vdv}}{{g}+{Kv}}=−{dh} \\ $$$$\int_{{u}} ^{\mathrm{0}} \frac{{vdv}}{{g}+{Kv}}=−\int_{\mathrm{0}} ^{{H}} {dh} \\ $$$$\left[\frac{{v}}{{K}}−\frac{{g}\:\mathrm{ln}\:\left({g}+{Kv}\right)}{{K}^{\mathrm{2}} }\right]_{{u}} ^{\mathrm{0}} =−{H} \\ $$$$−\frac{{g}\:\mathrm{ln}\:{g}}{{K}^{\mathrm{2}} }−\frac{{u}}{{K}}+\frac{{g}\:\mathrm{ln}\:\left({g}+{Ku}\right)}{{K}^{\mathrm{2}} }=−{H} \\ $$$$\Rightarrow{H}=\frac{{u}}{{K}}−\frac{{g}}{{K}^{\mathrm{2}} }\mathrm{ln}\:\left(\mathrm{1}+\frac{{Ku}}{{g}}\right)={z}_{{max}} \\ $$ | ||
Commented by peter frank last updated on 18/Jan/20 | ||
$${please}\:{mr}\:{w}\:{help}\:\mathrm{77889} \\ $$ | ||
Commented by TawaTawa last updated on 18/Jan/20 | ||
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||
Commented by mr W last updated on 18/Jan/20 | ||
$${sorry},\:{i}\:{can}'{t}\:{help}. \\ $$ | ||
Commented by peter frank last updated on 18/Jan/20 | ||
$${why}\:{sir}\:{or}\:{the}\:{question} \\ $$$${is}\:{not}\:{clear}? \\ $$ | ||