Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 76855 by aliesam last updated on 31/Dec/19

Commented by aliesam last updated on 31/Dec/19

AB=BC=......=Fg=GA  prove that   the area=(a^2 /2)(π−7tan((π/(14))))

$${AB}={BC}=......={Fg}={GA} \\ $$$${prove}\:{that}\: \\ $$$${the}\:{area}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\pi−\mathrm{7}{tan}\left(\frac{\pi}{\mathrm{14}}\right)\right) \\ $$

Commented by 67549972 last updated on 08/Feb/20

$$ \\ $$

Answered by mr W last updated on 31/Dec/19

Commented by mr W last updated on 31/Dec/19

2θ=((2π)/7)  ⇒θ=(π/7)  R cos (θ/2)=(a/2)  ⇒R=(a/(2 cos (π/(14))))  A_(blue) =((R^2 sin 2θ)/2)=((a^2  sin ((2π)/7))/(8 cos^2  (π/(14))))  A_(green) =(a^2 /2)(θ−sin θ)=(a^2 /2)((π/7)−sin (π/7))    A=7(A_(blue) +A_(green) )  =7[((a^2  sin ((2π)/7))/(8 cos^2  (π/(14))))+(a^2 /2)((π/7)−sin (π/7))]  =(a^2 /2)[π+((7 sin ((2π)/7))/(4 cos^2  (π/(14))))−7 sin (π/7)]  =(a^2 /2)[π+((7 sin (π/7) cos (π/7))/(2 cos^2  (π/(14))))−7 sin (π/7)]  =(a^2 /2)[π+7 sin (π/7)(((cos (π/7))/(2 cos^2  (π/(14))))−1)]  =(a^2 /2)[π+7 sin (π/7)(((cos (π/7)−2 cos^2  (π/(14)))/(2 cos^2  (π/(14)))))]  =(a^2 /2)[π−((7 sin (π/7))/(2 cos^2  (π/(14))))]  =(a^2 /2)[π−((14 sin (π/(14)) cos (π/(14)))/(2 cos^2  (π/(14))))]  =(a^2 /2)[π−((7 sin (π/(14)))/(cos (π/(14))))]  =(a^2 /2)(π−7 tan (π/(14)))

$$\mathrm{2}\theta=\frac{\mathrm{2}\pi}{\mathrm{7}} \\ $$$$\Rightarrow\theta=\frac{\pi}{\mathrm{7}} \\ $$$${R}\:\mathrm{cos}\:\frac{\theta}{\mathrm{2}}=\frac{{a}}{\mathrm{2}} \\ $$$$\Rightarrow{R}=\frac{{a}}{\mathrm{2}\:\mathrm{cos}\:\frac{\pi}{\mathrm{14}}} \\ $$$${A}_{{blue}} =\frac{{R}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{7}}}{\mathrm{8}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}} \\ $$$${A}_{{green}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\theta−\mathrm{sin}\:\theta\right)=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\pi}{\mathrm{7}}−\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\right) \\ $$$$ \\ $$$${A}=\mathrm{7}\left({A}_{{blue}} +{A}_{{green}} \right) \\ $$$$=\mathrm{7}\left[\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{7}}}{\mathrm{8}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}}+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\pi}{\mathrm{7}}−\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\right)\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\pi+\frac{\mathrm{7}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{7}}}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}}−\mathrm{7}\:\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\pi+\frac{\mathrm{7}\:\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\:\mathrm{cos}\:\frac{\pi}{\mathrm{7}}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}}−\mathrm{7}\:\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\pi+\mathrm{7}\:\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\left(\frac{\mathrm{cos}\:\frac{\pi}{\mathrm{7}}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}}−\mathrm{1}\right)\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\pi+\mathrm{7}\:\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\left(\frac{\mathrm{cos}\:\frac{\pi}{\mathrm{7}}−\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}}\right)\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\pi−\frac{\mathrm{7}\:\mathrm{sin}\:\frac{\pi}{\mathrm{7}}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}}\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\pi−\frac{\mathrm{14}\:\mathrm{sin}\:\frac{\pi}{\mathrm{14}}\:\mathrm{cos}\:\frac{\pi}{\mathrm{14}}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{14}}}\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\pi−\frac{\mathrm{7}\:\mathrm{sin}\:\frac{\pi}{\mathrm{14}}}{\mathrm{cos}\:\frac{\pi}{\mathrm{14}}}\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\pi−\mathrm{7}\:\mathrm{tan}\:\frac{\pi}{\mathrm{14}}\right) \\ $$

Commented by jagoll last updated on 31/Dec/19

waw....fantastic sir

$${waw}....{fantastic}\:{sir}\: \\ $$

Commented by aliesam last updated on 31/Dec/19

briliant solution sir . thank you

$${briliant}\:{solution}\:{sir}\:.\:{thank}\:{you} \\ $$

Commented by Tawa11 last updated on 29/Dec/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com