Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 76830 by peter frank last updated on 30/Dec/19

Commented by mathmax by abdo last updated on 05/Jan/20

let remember that arctanz =(1/(2i))ln(((1+iz)/(1−iz))) (result proved)  iln(((a−ib)/(a+ib))) =−iln(((a+ib)/(a−ib))) =−iln(((1+i(b/a))/(1−i(b/a)))) =−i(2i)arctan((b/a))  =2 arctan((b/a)) ⇒tan(iln(((a−ib)/(a+ib))))=tan(2arctan((b/a)))  =((2(b/a))/(1−(b^2 /a^2 ))) =(((2b)/a)/((a^2 −b^2 )/a^2 )) =((2b)/a)×(a^2 /(a^2 −b^2 )) =((2ab)/(a^2 −b^2 )) .

$${let}\:{remember}\:{that}\:{arctanz}\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right)\:\left({result}\:{proved}\right) \\ $$$${iln}\left(\frac{{a}−{ib}}{{a}+{ib}}\right)\:=−{iln}\left(\frac{{a}+{ib}}{{a}−{ib}}\right)\:=−{iln}\left(\frac{\mathrm{1}+{i}\frac{{b}}{{a}}}{\mathrm{1}−{i}\frac{{b}}{{a}}}\right)\:=−{i}\left(\mathrm{2}{i}\right){arctan}\left(\frac{{b}}{{a}}\right) \\ $$$$=\mathrm{2}\:{arctan}\left(\frac{{b}}{{a}}\right)\:\Rightarrow{tan}\left({iln}\left(\frac{{a}−{ib}}{{a}+{ib}}\right)\right)={tan}\left(\mathrm{2}{arctan}\left(\frac{{b}}{{a}}\right)\right) \\ $$$$=\frac{\mathrm{2}\frac{{b}}{{a}}}{\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}\:=\frac{\frac{\mathrm{2}{b}}{{a}}}{\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}\:=\frac{\mathrm{2}{b}}{{a}}×\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:=\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:. \\ $$

Commented by peter frank last updated on 05/Jan/20

thank you

$${thank}\:{you} \\ $$

Answered by MJS last updated on 31/Dec/19

ln (p+qi) =(1/2)ln (p^2 +q^2 ) +i arctan (q/p)  i ln (p+qi) =−arctan (q/p) +i((ln (p^2 +q^2 ))/2)=       [((a−bi)/(a+bi))=((a^2 −b^2 )/(a^2 +b^2 ))−((2ab)/(a^2 +b^2 ))i ⇒ p=((a^2 −b^2 )/(a^2 +b^2 )); q=−((2ab)/(a^2 +b^2 )) ⇒ p^2 +q^2 =1]  =arctan ((2ab)/(a^2 −b^2 ))  ⇒ tan (i ln ((a−bi)/(a+bi))) =((2ab)/(a^2 −b^2 ))

$$\mathrm{ln}\:\left({p}+{q}\mathrm{i}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\:+\mathrm{i}\:\mathrm{arctan}\:\frac{{q}}{{p}} \\ $$$$\mathrm{i}\:\mathrm{ln}\:\left({p}+{q}\mathrm{i}\right)\:=−\mathrm{arctan}\:\frac{{q}}{{p}}\:+\mathrm{i}\frac{\mathrm{ln}\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)}{\mathrm{2}}= \\ $$$$\:\:\:\:\:\left[\frac{{a}−{b}\mathrm{i}}{{a}+{b}\mathrm{i}}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{i}\:\Rightarrow\:{p}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} };\:{q}=−\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\Rightarrow\:{p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{1}\right] \\ $$$$=\mathrm{arctan}\:\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{tan}\:\left(\mathrm{i}\:\mathrm{ln}\:\frac{{a}−{b}\mathrm{i}}{{a}+{b}\mathrm{i}}\right)\:=\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$

Commented by peter frank last updated on 31/Dec/19

explain the first line

$${explain}\:{the}\:{first}\:{line}\: \\ $$

Commented by mr W last updated on 31/Dec/19

p+qi=(√(p^2 +q^2 ))((p/(√(p^2 +q^2 )))+(q/(√(p^2 +q^2 )))i)  p+qi=(√(p^2 +q^2 ))(cos α+i sin α) with α=tan^(−1) (q/p)  p+qi=(√(p^2 +q^2 )) e^(iα)   ⇒ln (p+qi)=ln ((√(p^2 +q^2 )) e^(iα) )  =(1/2)ln (p^2 +q^2 )+iα  =(1/2)ln (p^2 +q^2 )+i tan^(−1) (q/p)

$${p}+{qi}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\left(\frac{{p}}{\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }}+\frac{{q}}{\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }}{i}\right) \\ $$$${p}+{qi}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\left(\mathrm{cos}\:\alpha+{i}\:\mathrm{sin}\:\alpha\right)\:{with}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{{q}}{{p}} \\ $$$${p}+{qi}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:{e}^{{i}\alpha} \\ $$$$\Rightarrow\mathrm{ln}\:\left({p}+{qi}\right)=\mathrm{ln}\:\left(\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:{e}^{{i}\alpha} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+{i}\alpha \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+{i}\:\mathrm{tan}^{−\mathrm{1}} \frac{{q}}{{p}} \\ $$

Commented by peter frank last updated on 31/Dec/19

thank you sir for ellaboration

$${thank}\:{you}\:{sir}\:{for}\:{ellaboration} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com