Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 76627 by Maclaurin Stickker last updated on 28/Dec/19

Commented by Maclaurin Stickker last updated on 28/Dec/19

If C′ and B′ are midpints of AC and  AB, find cot(θ) as a function  of angles B and C.

$${If}\:{C}'\:{and}\:{B}'\:{are}\:{midpints}\:{of}\:{AC}\:{and} \\ $$$${AB},\:{find}\:{cot}\left(\theta\right)\:{as}\:{a}\:{function} \\ $$$${of}\:{angles}\:{B}\:{and}\:{C}. \\ $$

Commented by Maclaurin Stickker last updated on 28/Dec/19

answer: cot(θ)=(1/2)(cot(B)+cot(C))  How can I get this result?

$${answer}:\:{cot}\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({cot}\left({B}\right)+{cot}\left({C}\right)\right) \\ $$$${How}\:{can}\:{I}\:{get}\:{this}\:{result}? \\ $$

Answered by $@ty@m123 last updated on 28/Dec/19

cot θ=((PB′)/(PM))  =(((1/2)B′C′)/(PM))  =(((1/2)(BC−B′C′))/(PM))  =(((1/2)(BM+MC−C′P−PB′))/(PM))  =(1/2){(((BM−C′P)/(PM)))+(((MC−PB′)/(PM)))}  =(1/2)(cot B+cot C)  Plese treat it as a hint not complete  solution.

$$\mathrm{cot}\:\theta=\frac{{PB}'}{{PM}} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}{B}'{C}'}{{PM}} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}\left({BC}−{B}'{C}'\right)}{{PM}} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}\left({BM}+{MC}−{C}'{P}−{PB}'\right)}{{PM}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\left(\frac{{BM}−{C}'{P}}{{PM}}\right)+\left(\frac{{MC}−{PB}'}{{PM}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cot}\:{B}+\mathrm{cot}\:{C}\right) \\ $$$$\boldsymbol{{Plese}}\:\boldsymbol{{treat}}\:\boldsymbol{{it}}\:\boldsymbol{{as}}\:\boldsymbol{{a}}\:\boldsymbol{{hint}}\:\boldsymbol{{not}}\:\boldsymbol{{complete}} \\ $$$$\boldsymbol{{solution}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com