Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76317 by Master last updated on 26/Dec/19

Commented by john santu last updated on 26/Dec/19

∫e^(xlnx)  dx. with integration by part  u=e^(xlnx) →du=(lnx+1)e^(xlnx) . dv=dx   I=xe^(xlnx) −∫(xlnx+x)e^(xlnx) dx

$$\int{e}^{{xlnx}} \:{dx}.\:{with}\:{integration}\:{by}\:{part} \\ $$$${u}={e}^{{xlnx}} \rightarrow{du}=\left({lnx}+\mathrm{1}\right){e}^{{xlnx}} .\:{dv}={dx}\: \\ $$$${I}={xe}^{{xlnx}} −\int\left({xlnx}+{x}\right){e}^{{xlnx}} {dx} \\ $$

Commented by turbo msup by abdo last updated on 26/Dec/19

at form of serie  ∫ x^x dx =∫ e^(xln(x)) dx  =∫  Σ_(n=0) ^∞   ((x^n (lnx)^n )/(n!)) dx  =Σ_(n=0) ^∞  (1/(n!)) ∫ x^n (lnx)^n  dx  and a_n =∫x^n (lnx)^n  dx can be  fiund by recurrence...

$${at}\:{form}\:{of}\:{serie} \\ $$$$\int\:{x}^{{x}} {dx}\:=\int\:{e}^{{xln}\left({x}\right)} {dx} \\ $$$$=\int\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} \left({lnx}\right)^{{n}} }{{n}!}\:{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\int\:{x}^{{n}} \left({lnx}\right)^{{n}} \:{dx} \\ $$$${and}\:{a}_{{n}} =\int{x}^{{n}} \left({lnx}\right)^{{n}} \:{dx}\:{can}\:{be} \\ $$$${fiund}\:{by}\:{recurrence}... \\ $$

Commented by mr W last updated on 27/Dec/19

i see absolutely no sense for   repeated posting questions like  ∫x^x dx or ∫x!dx.

$${i}\:{see}\:{absolutely}\:{no}\:{sense}\:{for}\: \\ $$$${repeated}\:{posting}\:{questions}\:{like} \\ $$$$\int{x}^{{x}} {dx}\:{or}\:\int{x}!{dx}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com