Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76090 by john santuy last updated on 23/Dec/19

Commented by Prithwish sen last updated on 23/Dec/19

0

$$\mathrm{0} \\ $$

Answered by MJS last updated on 23/Dec/19

we had this before  ∫_(−a) ^a xdx=[(x^2 /2)]_(−a) ^a =0 ∀a∈R  ⇒ lim_(a→∞) (∫_(−a) ^a xdx)=0

$$\mathrm{we}\:\mathrm{had}\:\mathrm{this}\:\mathrm{before} \\ $$$$\underset{−{a}} {\overset{{a}} {\int}}{xdx}=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{−{a}} ^{{a}} =\mathrm{0}\:\forall{a}\in\mathbb{R} \\ $$$$\Rightarrow\:\underset{{a}\rightarrow\infty} {\mathrm{lim}}\left(\underset{−{a}} {\overset{{a}} {\int}}{xdx}\right)=\mathrm{0} \\ $$

Commented by Prithwish sen last updated on 23/Dec/19

Sir I think it will be  a→∞  not x→∞

$$\mathrm{Sir}\:\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{will}\:\mathrm{be} \\ $$$$\boldsymbol{\mathrm{a}}\rightarrow\infty\:\:\boldsymbol{\mathrm{not}}\:\boldsymbol{\mathrm{x}}\rightarrow\infty \\ $$

Commented by MJS last updated on 23/Dec/19

yes of course, thank you!

$$\mathrm{yes}\:\mathrm{of}\:\mathrm{course},\:\mathrm{thank}\:\mathrm{you}! \\ $$

Commented by Prithwish sen last updated on 23/Dec/19

welcome sir.

$$\mathrm{welcome}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com