Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74068 by FCB last updated on 18/Nov/19

Commented by FCB last updated on 19/Nov/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by FCB last updated on 18/Nov/19

[e^x ]−Integerpart(whole part)

$$\left[\mathrm{e}^{\mathrm{x}} \right]−\mathrm{Integerpart}\left(\mathrm{whole}\:\mathrm{part}\right) \\ $$

Commented by mathmax by abdo last updated on 18/Nov/19

changement  e^x =t give ∫_0 ^2 [e^x ]dx = ∫_1 ^e^2  [t](dt/t)  e^2 ∼7,389 ⇒∫_0 ^2 [e^x ]dx =∫_1 ^(7,389)  (([t])/t)dt  =Σ_(k=1) ^6   ∫_k ^(k+1)   (([t])/t)dt + ∫_7 ^(7,389)  (([t])/t)dt  =Σ_(k=1) ^6 k {ln(k+1)−ln(k)} +7 {ln(e^2 )−ln(7)}  =Σ_(k=1) ^6 kln(((k+1)/k)) +7{2−ln(7)}  =ln(2)+2ln((3/2))+3ln((4/3))+4ln((5/4))+5ln((6/5))+6ln((7/6))  +7{2−ln(7)}.

$${changement}\:\:{e}^{{x}} ={t}\:{give}\:\int_{\mathrm{0}} ^{\mathrm{2}} \left[{e}^{{x}} \right]{dx}\:=\:\int_{\mathrm{1}} ^{{e}^{\mathrm{2}} } \left[{t}\right]\frac{{dt}}{{t}} \\ $$$${e}^{\mathrm{2}} \sim\mathrm{7},\mathrm{389}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{2}} \left[{e}^{{x}} \right]{dx}\:=\int_{\mathrm{1}} ^{\mathrm{7},\mathrm{389}} \:\frac{\left[{t}\right]}{{t}}{dt} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{\mathrm{6}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{\left[{t}\right]}{{t}}{dt}\:+\:\int_{\mathrm{7}} ^{\mathrm{7},\mathrm{389}} \:\frac{\left[{t}\right]}{{t}}{dt} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{\mathrm{6}} {k}\:\left\{{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\right\}\:+\mathrm{7}\:\left\{{ln}\left({e}^{\mathrm{2}} \right)−{ln}\left(\mathrm{7}\right)\right\} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{\mathrm{6}} {kln}\left(\frac{{k}+\mathrm{1}}{{k}}\right)\:+\mathrm{7}\left\{\mathrm{2}−{ln}\left(\mathrm{7}\right)\right\} \\ $$$$={ln}\left(\mathrm{2}\right)+\mathrm{2}{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)+\mathrm{3}{ln}\left(\frac{\mathrm{4}}{\mathrm{3}}\right)+\mathrm{4}{ln}\left(\frac{\mathrm{5}}{\mathrm{4}}\right)+\mathrm{5}{ln}\left(\frac{\mathrm{6}}{\mathrm{5}}\right)+\mathrm{6}{ln}\left(\frac{\mathrm{7}}{\mathrm{6}}\right) \\ $$$$+\mathrm{7}\left\{\mathrm{2}−{ln}\left(\mathrm{7}\right)\right\}. \\ $$

Commented by abdomathmax last updated on 19/Nov/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Answered by Tanmay chaudhury last updated on 18/Nov/19

e^x =1  when x=0  e^x =2  when x=ln2  e^x =3   when x=ln3  e^x =4   when x=ln4  e^x =5  when x=ln5  e^x =6 when x=ln6  e^x =7  when x=ln7  e^x =8  when x=ln8→x=2.079 beyond given interval  ∫_0 ^2 [e^x ]dx  =∫_0 ^(ln2) 1×dx+∫_(ln2) ^(ln3) 2dx+∫_(ln3) ^(ln4) 3dx+∫_(ln4) ^(ln5) 4dx+∫_(ln5) ^(ln6) 5dx+∫_(ln6) ^(ln7) 6dx=  ln2+2(ln3−ln2)+3(ln4−ln3)+4(ln5−ln4)+5(ln6−ln5)+6(ln7−ln6)  =−ln2−ln3−ln4−ln5−ln6+6ln7  =ln((7^6 /(2×3×4×5×6)))=ln((7^6 /(720)))=6ln7−ln720  =11.68−6.58≈5.10  pls check...

$${e}^{{x}} =\mathrm{1}\:\:{when}\:{x}=\mathrm{0} \\ $$$${e}^{{x}} =\mathrm{2}\:\:{when}\:{x}={ln}\mathrm{2} \\ $$$${e}^{{x}} =\mathrm{3}\:\:\:{when}\:{x}={ln}\mathrm{3} \\ $$$${e}^{{x}} =\mathrm{4}\:\:\:{when}\:{x}={ln}\mathrm{4} \\ $$$${e}^{{x}} =\mathrm{5}\:\:{when}\:{x}={ln}\mathrm{5} \\ $$$${e}^{{x}} =\mathrm{6}\:{when}\:{x}={ln}\mathrm{6} \\ $$$${e}^{{x}} =\mathrm{7}\:\:{when}\:{x}={ln}\mathrm{7} \\ $$$${e}^{{x}} =\mathrm{8}\:\:{when}\:{x}={ln}\mathrm{8}\rightarrow{x}=\mathrm{2}.\mathrm{079}\:{beyond}\:{given}\:{interval} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \left[{e}^{{x}} \right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{{ln}\mathrm{2}} \mathrm{1}×{dx}+\int_{{ln}\mathrm{2}} ^{{ln}\mathrm{3}} \mathrm{2}{dx}+\int_{{ln}\mathrm{3}} ^{{ln}\mathrm{4}} \mathrm{3}{dx}+\int_{{ln}\mathrm{4}} ^{{ln}\mathrm{5}} \mathrm{4}{dx}+\int_{{ln}\mathrm{5}} ^{{ln}\mathrm{6}} \mathrm{5}{dx}+\int_{{ln}\mathrm{6}} ^{{ln}\mathrm{7}} \mathrm{6}{dx}= \\ $$$${ln}\mathrm{2}+\mathrm{2}\left({ln}\mathrm{3}−{ln}\mathrm{2}\right)+\mathrm{3}\left({ln}\mathrm{4}−{ln}\mathrm{3}\right)+\mathrm{4}\left({ln}\mathrm{5}−{ln}\mathrm{4}\right)+\mathrm{5}\left({ln}\mathrm{6}−{ln}\mathrm{5}\right)+\mathrm{6}\left({ln}\mathrm{7}−{ln}\mathrm{6}\right) \\ $$$$=−{ln}\mathrm{2}−{ln}\mathrm{3}−{ln}\mathrm{4}−{ln}\mathrm{5}−{ln}\mathrm{6}+\mathrm{6}{ln}\mathrm{7} \\ $$$$={ln}\left(\frac{\mathrm{7}^{\mathrm{6}} }{\mathrm{2}×\mathrm{3}×\mathrm{4}×\mathrm{5}×\mathrm{6}}\right)={ln}\left(\frac{\mathrm{7}^{\mathrm{6}} }{\mathrm{720}}\right)=\mathrm{6}{ln}\mathrm{7}−{ln}\mathrm{720} \\ $$$$=\mathrm{11}.\mathrm{68}−\mathrm{6}.\mathrm{58}\approx\mathrm{5}.\mathrm{10}\:\:{pls}\:{check}... \\ $$

Commented by mr W last updated on 19/Nov/19

=∫_0 ^(ln2) 1×dx+∫_(ln2) ^(ln3) 2dx+∫_(ln3) ^(ln4) 3dx+∫_(ln4) ^(ln5) 4dx+∫_(ln5) ^(ln6) 5dx+∫_(ln6) ^(ln7) 6dx+∫_(ln 7) ^2 7dx  =ln2+2(ln3−ln2)+3(ln4−ln3)+4(ln5−ln4)+5(ln6−ln5)+6(ln7−ln6)+7(2−ln 7)  =−ln2−ln3−ln4−ln5−ln6−ln7+7×2  =2×7−ln (2×3×...×7)  =14−ln (7!)  ≈5.4748

$$=\int_{\mathrm{0}} ^{{ln}\mathrm{2}} \mathrm{1}×{dx}+\int_{{ln}\mathrm{2}} ^{{ln}\mathrm{3}} \mathrm{2}{dx}+\int_{{ln}\mathrm{3}} ^{{ln}\mathrm{4}} \mathrm{3}{dx}+\int_{{ln}\mathrm{4}} ^{{ln}\mathrm{5}} \mathrm{4}{dx}+\int_{{ln}\mathrm{5}} ^{{ln}\mathrm{6}} \mathrm{5}{dx}+\int_{{ln}\mathrm{6}} ^{{ln}\mathrm{7}} \mathrm{6}{dx}+\int_{\mathrm{ln}\:\mathrm{7}} ^{\mathrm{2}} \mathrm{7}{dx} \\ $$$$={ln}\mathrm{2}+\mathrm{2}\left({ln}\mathrm{3}−{ln}\mathrm{2}\right)+\mathrm{3}\left({ln}\mathrm{4}−{ln}\mathrm{3}\right)+\mathrm{4}\left({ln}\mathrm{5}−{ln}\mathrm{4}\right)+\mathrm{5}\left({ln}\mathrm{6}−{ln}\mathrm{5}\right)+\mathrm{6}\left({ln}\mathrm{7}−{ln}\mathrm{6}\right)+\mathrm{7}\left(\mathrm{2}−\mathrm{ln}\:\mathrm{7}\right) \\ $$$$=−{ln}\mathrm{2}−{ln}\mathrm{3}−{ln}\mathrm{4}−{ln}\mathrm{5}−{ln}\mathrm{6}−{ln}\mathrm{7}+\mathrm{7}×\mathrm{2} \\ $$$$=\mathrm{2}×\mathrm{7}−\mathrm{ln}\:\left(\mathrm{2}×\mathrm{3}×...×\mathrm{7}\right) \\ $$$$=\mathrm{14}−\mathrm{ln}\:\left(\mathrm{7}!\right) \\ $$$$\approx\mathrm{5}.\mathrm{4748} \\ $$

Commented by FCB last updated on 18/Nov/19

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com