Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 71348 by ajfour last updated on 13/Oct/19

Commented by ajfour last updated on 13/Oct/19

If the circle has unit radius and  each part have same area, find  radius of circular arc.

$${If}\:{the}\:{circle}\:{has}\:{unit}\:{radius}\:{and} \\ $$$${each}\:{part}\:{have}\:{same}\:{area},\:{find} \\ $$$${radius}\:{of}\:{circular}\:{arc}. \\ $$

Commented by ajfour last updated on 14/Oct/19

Commented by ajfour last updated on 14/Oct/19

let center of small circle be origin.  p^2 +q^2 =1  p^2 +(q+1+k)^2 =R^2   ⇒ (1+k)(2q+1+k)=R^2 −1  ⇒ q=(1/2)[((R^2 −1)/(1+k))−(1+k)]   < 0  ⇒  p=(√(1−(1/4)[((R^2 −1)/(1+k))−(1+k)]^2 ))  let   θ=tan^(−1) ((∣q∣)/p)    A_1 =(((π/2−θ))/2)  ;   let  β=tan^(−1) (p/(q+1+k))  A_2 =((R^2 β)/2)  &   A_3 =((p(1+k))/2)  Now   A_1 −(A_2 −A_3 )=(π/4)  ⇒   (((π/2−θ))/2)−((R^2 β)/2)+((p(1+k))/2)=(π/4)   A_4 =(R^2 /2)cos^(−1) (k/R)−((k(√(R^2 −k^2 )))/2)=(π/2)    θ=tan^(−1) (((−(1/2)[((R^2 −1)/(1+k))−(1+k)])/(√(1−(1/4)[((R^2 −1)/(1+k))−(1+k)]^2 ))))    β=tan^(−1) (p/(q+1+k))  __________________________.

$${let}\:{center}\:{of}\:{small}\:{circle}\:{be}\:{origin}. \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{1} \\ $$$${p}^{\mathrm{2}} +\left({q}+\mathrm{1}+{k}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow\:\left(\mathrm{1}+{k}\right)\left(\mathrm{2}{q}+\mathrm{1}+{k}\right)={R}^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\:{q}=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{R}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{k}}−\left(\mathrm{1}+{k}\right)\right]\:\:\:<\:\mathrm{0} \\ $$$$\Rightarrow\:\:{p}=\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{{R}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{k}}−\left(\mathrm{1}+{k}\right)\right]^{\mathrm{2}} } \\ $$$${let}\:\:\:\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\mid{q}\mid}{{p}} \\ $$$$\:\:{A}_{\mathrm{1}} =\frac{\left(\pi/\mathrm{2}−\theta\right)}{\mathrm{2}}\:\:;\: \\ $$$${let}\:\:\beta=\mathrm{tan}^{−\mathrm{1}} \frac{{p}}{{q}+\mathrm{1}+{k}} \\ $$$${A}_{\mathrm{2}} =\frac{{R}^{\mathrm{2}} \beta}{\mathrm{2}}\:\:\&\:\:\:{A}_{\mathrm{3}} =\frac{{p}\left(\mathrm{1}+{k}\right)}{\mathrm{2}} \\ $$$${Now}\:\:\:{A}_{\mathrm{1}} −\left({A}_{\mathrm{2}} −{A}_{\mathrm{3}} \right)=\frac{\pi}{\mathrm{4}}\:\:\Rightarrow \\ $$$$\:\frac{\left(\pi/\mathrm{2}−\theta\right)}{\mathrm{2}}−\frac{{R}^{\mathrm{2}} \beta}{\mathrm{2}}+\frac{{p}\left(\mathrm{1}+{k}\right)}{\mathrm{2}}=\frac{\pi}{\mathrm{4}} \\ $$$$\:{A}_{\mathrm{4}} =\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\mathrm{cos}^{−\mathrm{1}} \frac{{k}}{{R}}−\frac{{k}\sqrt{{R}^{\mathrm{2}} −{k}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\theta=\mathrm{tan}^{−\mathrm{1}} \left(\frac{−\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{R}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{k}}−\left(\mathrm{1}+{k}\right)\right]}{\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{{R}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{k}}−\left(\mathrm{1}+{k}\right)\right]^{\mathrm{2}} }}\right) \\ $$$$\:\:\beta=\mathrm{tan}^{−\mathrm{1}} \frac{{p}}{{q}+\mathrm{1}+{k}} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com