Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 69829 by TawaTawa last updated on 28/Sep/19

Commented by TawaTawa last updated on 28/Sep/19

The question says do not use Newton′s law and kinematic

$$\mathrm{The}\:\mathrm{question}\:\mathrm{says}\:\mathrm{do}\:\mathrm{not}\:\mathrm{use}\:\mathrm{Newton}'\mathrm{s}\:\mathrm{law}\:\mathrm{and}\:\mathrm{kinematic} \\ $$

Commented by TawaTawa last updated on 28/Sep/19

Help with the (b) sir

$$\mathrm{Help}\:\mathrm{with}\:\mathrm{the}\:\left(\mathrm{b}\right)\:\mathrm{sir} \\ $$

Answered by mr W last updated on 28/Sep/19

(b)  energy at the beginning:  E_1 =(1/2)mv^2   energy at the end:  E_2 =mgh  work done by the gravity force:  −mgh  friction force:  f=μN=μmg cos θ  work done by the friction force:  −fs=−f (h/(sin θ))=−((μmgh)/(tan θ))  work=energy change  −mgh−((μmgh)/(tan θ))=mgh−(1/2)mv^2   ⇒μ=(2−(v^2 /(2gh)))tan θ=(2−((12^2 )/(2×10×5)))×tan 45°=0.56

$$\left({b}\right) \\ $$$${energy}\:{at}\:{the}\:{beginning}: \\ $$$${E}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} \\ $$$${energy}\:{at}\:{the}\:{end}: \\ $$$${E}_{\mathrm{2}} ={mgh} \\ $$$${work}\:{done}\:{by}\:{the}\:{gravity}\:{force}: \\ $$$$−{mgh} \\ $$$${friction}\:{force}: \\ $$$${f}=\mu{N}=\mu{mg}\:\mathrm{cos}\:\theta \\ $$$${work}\:{done}\:{by}\:{the}\:{friction}\:{force}: \\ $$$$−{fs}=−{f}\:\frac{{h}}{\mathrm{sin}\:\theta}=−\frac{\mu{mgh}}{\mathrm{tan}\:\theta} \\ $$$${work}={energy}\:{change} \\ $$$$−{mgh}−\frac{\mu{mgh}}{\mathrm{tan}\:\theta}={mgh}−\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} \\ $$$$\Rightarrow\mu=\left(\mathrm{2}−\frac{{v}^{\mathrm{2}} }{\mathrm{2}{gh}}\right)\mathrm{tan}\:\theta=\left(\mathrm{2}−\frac{\mathrm{12}^{\mathrm{2}} }{\mathrm{2}×\mathrm{10}×\mathrm{5}}\right)×\mathrm{tan}\:\mathrm{45}°=\mathrm{0}.\mathrm{56} \\ $$

Commented by TawaTawa last updated on 28/Sep/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 28/Sep/19

(a)  work done by the pulling force:  F cos θ s=20×(4/5)×5=80 J  friction force:  f=μN=μ(mg−F sin θ)=0.1(10×10−20×(3/5))=8.8 N  work done by the friction force:  fs=−8.8×5=−44 J  work done by all forces:  W=80−44=36 J  kinetic energy of mass:  E=(1/2)mv^2   work=energy change:  W=E  36=(1/2)×10×v^2   ⇒v=(√((36)/5))=(√(7.2))=2.68 m/s

$$\left({a}\right) \\ $$$${work}\:{done}\:{by}\:{the}\:{pulling}\:{force}: \\ $$$${F}\:\mathrm{cos}\:\theta\:{s}=\mathrm{20}×\frac{\mathrm{4}}{\mathrm{5}}×\mathrm{5}=\mathrm{80}\:{J} \\ $$$${friction}\:{force}: \\ $$$${f}=\mu{N}=\mu\left({mg}−{F}\:\mathrm{sin}\:\theta\right)=\mathrm{0}.\mathrm{1}\left(\mathrm{10}×\mathrm{10}−\mathrm{20}×\frac{\mathrm{3}}{\mathrm{5}}\right)=\mathrm{8}.\mathrm{8}\:{N} \\ $$$${work}\:{done}\:{by}\:{the}\:{friction}\:{force}: \\ $$$${fs}=−\mathrm{8}.\mathrm{8}×\mathrm{5}=−\mathrm{44}\:{J} \\ $$$${work}\:{done}\:{by}\:{all}\:{forces}: \\ $$$${W}=\mathrm{80}−\mathrm{44}=\mathrm{36}\:{J} \\ $$$${kinetic}\:{energy}\:{of}\:{mass}: \\ $$$${E}=\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} \\ $$$${work}={energy}\:{change}: \\ $$$${W}={E} \\ $$$$\mathrm{36}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{10}×{v}^{\mathrm{2}} \\ $$$$\Rightarrow{v}=\sqrt{\frac{\mathrm{36}}{\mathrm{5}}}=\sqrt{\mathrm{7}.\mathrm{2}}=\mathrm{2}.\mathrm{68}\:{m}/{s} \\ $$

Commented by TawaTawa last updated on 28/Sep/19

Wow, God bless you sir. I appreciate your time

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com