Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 69665 by ozodbek last updated on 26/Sep/19

Commented by ozodbek last updated on 26/Sep/19

solve

$$\mathrm{solve} \\ $$

Answered by mr W last updated on 26/Sep/19

x^y ln x=ln 9  x^y =((ln 9)/(ln x))  yln x=ln (((ln 9)/(ln x)))=ln (ln 9)−ln (ln x)  ⇒y=((ln (ln 9)−ln (ln x))/(ln x))  x^y ln y=ln 7  ((ln 9)/(ln x))ln y=ln 7  ln y=((ln 7 ln x)/(ln 9))  ln ((ln (ln 9)−ln (ln x))/(ln x))=((ln 7 ln x)/(ln 9))  ln [ln (ln 9)−ln (ln x)]−ln (ln x)=(((ln 7)/(ln 9)))ln x  with t=ln x  ln [ln (ln 9)−ln t]−ln t=(((ln 7)/(ln 9)))t  ⇒t=ln x=0.664263  ⇒x=1.943058  ⇒ln y=0.588285  ⇒y=1.800899

$${x}^{{y}} \mathrm{ln}\:{x}=\mathrm{ln}\:\mathrm{9} \\ $$$${x}^{{y}} =\frac{\mathrm{ln}\:\mathrm{9}}{\mathrm{ln}\:{x}} \\ $$$${y}\mathrm{ln}\:{x}=\mathrm{ln}\:\left(\frac{\mathrm{ln}\:\mathrm{9}}{\mathrm{ln}\:{x}}\right)=\mathrm{ln}\:\left(\mathrm{ln}\:\mathrm{9}\right)−\mathrm{ln}\:\left(\mathrm{ln}\:{x}\right) \\ $$$$\Rightarrow{y}=\frac{\mathrm{ln}\:\left(\mathrm{ln}\:\mathrm{9}\right)−\mathrm{ln}\:\left(\mathrm{ln}\:{x}\right)}{\mathrm{ln}\:{x}} \\ $$$${x}^{{y}} \mathrm{ln}\:{y}=\mathrm{ln}\:\mathrm{7} \\ $$$$\frac{\mathrm{ln}\:\mathrm{9}}{\mathrm{ln}\:{x}}\mathrm{ln}\:{y}=\mathrm{ln}\:\mathrm{7} \\ $$$$\mathrm{ln}\:{y}=\frac{\mathrm{ln}\:\mathrm{7}\:\mathrm{ln}\:{x}}{\mathrm{ln}\:\mathrm{9}} \\ $$$$\mathrm{ln}\:\frac{\mathrm{ln}\:\left(\mathrm{ln}\:\mathrm{9}\right)−\mathrm{ln}\:\left(\mathrm{ln}\:{x}\right)}{\mathrm{ln}\:{x}}=\frac{\mathrm{ln}\:\mathrm{7}\:\mathrm{ln}\:{x}}{\mathrm{ln}\:\mathrm{9}} \\ $$$$\mathrm{ln}\:\left[\mathrm{ln}\:\left(\mathrm{ln}\:\mathrm{9}\right)−\mathrm{ln}\:\left(\mathrm{ln}\:{x}\right)\right]−\mathrm{ln}\:\left(\mathrm{ln}\:{x}\right)=\left(\frac{\mathrm{ln}\:\mathrm{7}}{\mathrm{ln}\:\mathrm{9}}\right)\mathrm{ln}\:{x} \\ $$$${with}\:{t}=\mathrm{ln}\:{x} \\ $$$$\mathrm{ln}\:\left[\mathrm{ln}\:\left(\mathrm{ln}\:\mathrm{9}\right)−\mathrm{ln}\:{t}\right]−\mathrm{ln}\:{t}=\left(\frac{\mathrm{ln}\:\mathrm{7}}{\mathrm{ln}\:\mathrm{9}}\right){t} \\ $$$$\Rightarrow{t}=\mathrm{ln}\:{x}=\mathrm{0}.\mathrm{664263} \\ $$$$\Rightarrow{x}=\mathrm{1}.\mathrm{943058} \\ $$$$\Rightarrow\mathrm{ln}\:{y}=\mathrm{0}.\mathrm{588285} \\ $$$$\Rightarrow{y}=\mathrm{1}.\mathrm{800899} \\ $$

Commented by ozodbek last updated on 27/Sep/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by otchereabdullai@gmail.com last updated on 29/Sep/19

the great prof W you are truely exceptional

$$\mathrm{the}\:\mathrm{great}\:\mathrm{prof}\:\mathrm{W}\:\mathrm{you}\:\mathrm{are}\:\mathrm{truely}\:\mathrm{exceptional} \\ $$

Commented by mr W last updated on 29/Sep/19

nice to see you back in forum, sir!

$${nice}\:{to}\:{see}\:{you}\:{back}\:{in}\:{forum},\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com