Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 69183 by Tony Lin last updated on 21/Sep/19

Commented by Tony Lin last updated on 21/Sep/19

49. m_1 g=(m_1 +m_2 )a  ⇒a=((m_1 g)/(m_1 +m_2 ))  ⇒F=(M+m_1 +m_2 )a=((m_1 g(M+m_1 +m_2 ))/(m_1 +m_2 ))  I′m not sure of the direction of a_m_1    is → or ↓?  Or my method has mistakes?

$$\mathrm{49}.\:{m}_{\mathrm{1}} {g}=\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){a} \\ $$$$\Rightarrow{a}=\frac{{m}_{\mathrm{1}} {g}}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} } \\ $$$$\Rightarrow{F}=\left({M}+{m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){a}=\frac{{m}_{\mathrm{1}} {g}\left({M}+{m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right)}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} } \\ $$$${I}'{m}\:{not}\:{sure}\:{of}\:{the}\:{direction}\:{of}\:{a}_{{m}_{\mathrm{1}} } \\ $$$${is}\:\rightarrow\:{or}\:\downarrow? \\ $$$${Or}\:{my}\:{method}\:{has}\:{mistakes}? \\ $$

Commented by Tony Lin last updated on 21/Sep/19

53. Does this example satisfies the   conservation of horizontal momentum?  If Yes,how to solve it?

$$\mathrm{53}.\:{Does}\:{this}\:{example}\:{satisfies}\:{the}\: \\ $$$${conservation}\:{of}\:{horizontal}\:{momentum}? \\ $$$${If}\:{Yes},{how}\:{to}\:{solve}\:{it}? \\ $$

Answered by mr W last updated on 21/Sep/19

Commented by mr W last updated on 21/Sep/19

(note: in my solution m_1  corresponds  with m_2  in the question and m_2  with  m_1 )    all blocks must have the same horizontal  motion and no vertical motion.    T=m_2 g  N_2 =m_2 a  N_1 =m_1 g  T=m_1 a=m_2 g  ⇒a=(m_2 /m_1 )g  F−N_2 −T=Ma  ⇒F=Ma+N_2 +T=Ma+m_2 a+m_1 a  ⇒F=(M+m_2 +m_1 )a=(((M+m_1 +m_2 )m_2 g)/m_1 )

$$\left({note}:\:{in}\:{my}\:{solution}\:{m}_{\mathrm{1}} \:{corresponds}\right. \\ $$$${with}\:{m}_{\mathrm{2}} \:{in}\:{the}\:{question}\:{and}\:{m}_{\mathrm{2}} \:{with} \\ $$$$\left.{m}_{\mathrm{1}} \right) \\ $$$$ \\ $$$${all}\:{blocks}\:{must}\:{have}\:{the}\:{same}\:{horizontal} \\ $$$${motion}\:{and}\:{no}\:{vertical}\:{motion}. \\ $$$$ \\ $$$${T}={m}_{\mathrm{2}} {g} \\ $$$${N}_{\mathrm{2}} ={m}_{\mathrm{2}} {a} \\ $$$${N}_{\mathrm{1}} ={m}_{\mathrm{1}} {g} \\ $$$${T}={m}_{\mathrm{1}} {a}={m}_{\mathrm{2}} {g} \\ $$$$\Rightarrow{a}=\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }{g} \\ $$$${F}−{N}_{\mathrm{2}} −{T}={Ma} \\ $$$$\Rightarrow{F}={Ma}+{N}_{\mathrm{2}} +{T}={Ma}+{m}_{\mathrm{2}} {a}+{m}_{\mathrm{1}} {a} \\ $$$$\Rightarrow{F}=\left({M}+{m}_{\mathrm{2}} +{m}_{\mathrm{1}} \right){a}=\frac{\left({M}+{m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){m}_{\mathrm{2}} {g}}{{m}_{\mathrm{1}} } \\ $$

Commented by Tony Lin last updated on 21/Sep/19

Thanks,I got it.

$${Thanks},{I}\:{got}\:{it}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com