Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 68825 by peter frank last updated on 15/Sep/19

Answered by mind is power last updated on 16/Sep/19

dx(1+e^(x/y) )+e^(x/y) (1−(x/y))dy  p=1+e^(x/y)   q=e^(x/y) (1−(x/y))  (∂p/∂y)=−x(e^(x/y) /y^(2 ) )  (∂q/∂x)=(e^(x/y) /y)(1−(x/y))−(e^(x/y) /y)=−x(e^(x/y) /y^2 )=(∂p/∂y)  so exact equation

$${dx}\left(\mathrm{1}+{e}^{\frac{{x}}{{y}}} \right)+{e}^{\frac{{x}}{{y}}} \left(\mathrm{1}−\frac{{x}}{{y}}\right){dy} \\ $$$${p}=\mathrm{1}+{e}^{\frac{{x}}{{y}}} \\ $$$${q}={e}^{\frac{{x}}{{y}}} \left(\mathrm{1}−\frac{{x}}{{y}}\right) \\ $$$$\frac{\partial{p}}{\partial{y}}=−{x}\frac{{e}^{\frac{{x}}{{y}}} }{{y}^{\mathrm{2}\:} } \\ $$$$\frac{\partial{q}}{\partial{x}}=\frac{{e}^{\frac{{x}}{{y}}} }{{y}}\left(\mathrm{1}−\frac{{x}}{{y}}\right)−\frac{{e}^{\frac{{x}}{{y}}} }{{y}}=−{x}\frac{{e}^{\frac{{x}}{{y}}} }{{y}^{\mathrm{2}} }=\frac{\partial{p}}{\partial{y}} \\ $$$${so}\:{exact}\:{equation} \\ $$

Commented by peter frank last updated on 22/Sep/19

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com