Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 68783 by peter frank last updated on 15/Sep/19

Commented by peter frank last updated on 22/Sep/19

thank you

$${thank}\:{you}\: \\ $$

Commented by ajfour last updated on 15/Sep/19

Commented by peter frank last updated on 21/Sep/19

please sir.continue

$${please}\:{sir}.{continue} \\ $$

Commented by ajfour last updated on 21/Sep/19

let S ′P =a+s ,   SP = a−s  let P (h,k)      ((S ′P)/(SP))=((a+s)/(a−s))  a−s=e((a/e)−h)  a+s=e((a/e)+h)  ⇒ s=eh     ((S ′P)/(SP))=((a+eh)/(a−eh))         ................(i)  (x^2 /a^2 )+(y^2 /b^2 )=1   ⇒  −(dx/dy)=(a^2 /b^2 )((y/x))  slope of normal     =−(dx/dy)∣_P =(a^2 /b^2 )((k/h))       eq. of normal  y−k=(a^2 /b^2 )((k/h))(x−h)  let normal intersect x-axis  at N(0, x_(int) )  x_(int) =h(1−(b^2 /a^2 ))  ((SN)/(S ′N))=((ae−x_(int) )/(x_(int) +ae))=((ae−h(1−(b^2 /a^2 )))/(h(1−(b^2 /a^2 ))+ae))=r_2   ⇒ ((SN)/(S ′N))=((a−eh)/(eh+a))        .............(ii)  from (i) and (ii) we find        ((S ′P)/(SP))=((S ′N)/(SN))  ⇒  PN is angular bisector        of ∠S ′PS .

$${let}\:{S}\:'{P}\:={a}+{s}\:,\:\:\:{SP}\:=\:{a}−{s} \\ $$$${let}\:{P}\:\left({h},{k}\right) \\ $$$$\:\:\:\:\frac{{S}\:'{P}}{{SP}}=\frac{{a}+{s}}{{a}−{s}} \\ $$$${a}−{s}={e}\left(\frac{{a}}{{e}}−{h}\right) \\ $$$${a}+{s}={e}\left(\frac{{a}}{{e}}+{h}\right) \\ $$$$\Rightarrow\:{s}={eh} \\ $$$$\:\:\:\frac{{S}\:'{P}}{{SP}}=\frac{{a}+{eh}}{{a}−{eh}}\:\:\:\:\:\:\:\:\:................\left({i}\right) \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\Rightarrow\:\:−\frac{{dx}}{{dy}}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\left(\frac{{y}}{{x}}\right) \\ $$$${slope}\:{of}\:{normal} \\ $$$$\:\:\:=−\frac{{dx}}{{dy}}\mid_{{P}} =\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\left(\frac{{k}}{{h}}\right) \\ $$$$\:\:\:\:\:{eq}.\:{of}\:{normal} \\ $$$${y}−{k}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\left(\frac{{k}}{{h}}\right)\left({x}−{h}\right) \\ $$$${let}\:{normal}\:{intersect}\:{x}-{axis} \\ $$$${at}\:{N}\left(\mathrm{0},\:{x}_{{int}} \right) \\ $$$${x}_{{int}} ={h}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right) \\ $$$$\frac{{SN}}{{S}\:'{N}}=\frac{{ae}−{x}_{{int}} }{{x}_{{int}} +{ae}}=\frac{{ae}−{h}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)}{{h}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)+{ae}}={r}_{\mathrm{2}} \\ $$$$\Rightarrow\:\frac{{SN}}{{S}\:'{N}}=\frac{{a}−{eh}}{{eh}+{a}}\:\:\:\:\:\:\:\:.............\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{find} \\ $$$$\:\:\:\:\:\:\frac{{S}\:'{P}}{{SP}}=\frac{{S}\:'{N}}{{SN}} \\ $$$$\Rightarrow\:\:{PN}\:{is}\:{angular}\:{bisector} \\ $$$$\:\:\:\:\:\:{of}\:\angle{S}\:'{PS}\:. \\ $$

Commented by peter frank last updated on 22/Sep/19

please help 69230

$${please}\:{help}\:\mathrm{69230} \\ $$

Answered by mr W last updated on 15/Sep/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com