Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 68554 by Mikael last updated on 13/Sep/19

Commented by Prithwish sen last updated on 13/Sep/19

lim_(n→∞) (1/n)[(1/(1+(0/n)))+ (1/(1+(1/n))) +......+(1/(1+((n−1)/n)))]  =(1/n)Σ_(r=0) ^(n−1)   lim _(n→∞) (1/(1+(r/n))) = ∫_0 ^1 (dx/(1+x)) = ln[1+x]_0 ^1

$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\mathrm{1}}{\mathrm{n}}\left[\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{0}}{\mathrm{n}}}+\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}}\:+......+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{n}−\mathrm{1}}{\mathrm{n}}}\right] \\ $$$$=\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\underset{\boldsymbol{\mathrm{r}}=\mathrm{0}} {\overset{\boldsymbol{\mathrm{n}}−\mathrm{1}} {\sum}}\:\:\boldsymbol{\mathrm{lim}}\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\:}\frac{\mathrm{1}}{\mathrm{1}+\frac{\boldsymbol{\mathrm{r}}}{\boldsymbol{\mathrm{n}}}}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\boldsymbol{\mathrm{dx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}}\:=\:\boldsymbol{\mathrm{ln}}\left[\mathrm{1}+\boldsymbol{\mathrm{x}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$

Commented by mathmax by abdo last updated on 13/Sep/19

let A_n =(1/n)+(1/(n+1))+...+(1/(3n−1)) ⇒A_n =Σ_(k=0) ^(n−1)  (1/(n+k))  =(1/n)Σ_(k=0) ^(n−1)  (1/(1+(k/n)))  so A_n is a Rieman sum ⇒lim_(n→+∞) A_n =∫_0 ^1  (dx/(1+x))  =[ln∣1+x∣]_0 ^1   =ln(2) .

$${let}\:{A}_{{n}} =\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}+\mathrm{1}}+...+\frac{\mathrm{1}}{\mathrm{3}{n}−\mathrm{1}}\:\Rightarrow{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{n}+{k}} \\ $$$$=\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}}{{n}}}\:\:{so}\:{A}_{{n}} {is}\:{a}\:{Rieman}\:{sum}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{1}+{x}} \\ $$$$=\left[{ln}\mid\mathrm{1}+{x}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:={ln}\left(\mathrm{2}\right)\:. \\ $$

Commented by Mikael last updated on 13/Sep/19

God bless you Sir.

$${God}\:{bless}\:{you}\:{Sir}. \\ $$

Commented by mathmax by abdo last updated on 13/Sep/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com