Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 68537 by naka3546 last updated on 13/Sep/19

Answered by MJS last updated on 13/Sep/19

1 8 17  4 7 17  4 13 13  7 7 16  8 11 13

$$\mathrm{1}\:\mathrm{8}\:\mathrm{17} \\ $$$$\mathrm{4}\:\mathrm{7}\:\mathrm{17} \\ $$$$\mathrm{4}\:\mathrm{13}\:\mathrm{13} \\ $$$$\mathrm{7}\:\mathrm{7}\:\mathrm{16} \\ $$$$\mathrm{8}\:\mathrm{11}\:\mathrm{13} \\ $$

Commented by naka3546 last updated on 13/Sep/19

please  show  your  workings

$${please}\:\:{show}\:\:{your}\:\:{workings} \\ $$

Commented by MJS last updated on 13/Sep/19

we have to try  (√(354−a^2 −b^2 ))=c  let a≤b≤c  we find a≤⌊(√(354))⌋ ∧ a≤b≤⌊(√(177−(a^2 /2)))⌋ ⇒  ⇒ 1≤a≤10∧a≤b≤⌊(√(177−(a^2 /2)))⌋  this leads to the following borders:  1≤a≤4 ⇒ a≤b≤13  5≤a≤8 ⇒ a≤b≤12  9≤a≤10 ⇒ a≤b≤11

$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{try} \\ $$$$\sqrt{\mathrm{354}−{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }={c} \\ $$$$\mathrm{let}\:{a}\leqslant{b}\leqslant{c} \\ $$$$\mathrm{we}\:\mathrm{find}\:{a}\leqslant\lfloor\sqrt{\mathrm{354}}\rfloor\:\wedge\:{a}\leqslant{b}\leqslant\lfloor\sqrt{\mathrm{177}−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}}\rfloor\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{1}\leqslant{a}\leqslant\mathrm{10}\wedge{a}\leqslant{b}\leqslant\lfloor\sqrt{\mathrm{177}−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}}\rfloor \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{the}\:\mathrm{following}\:\mathrm{borders}: \\ $$$$\mathrm{1}\leqslant{a}\leqslant\mathrm{4}\:\Rightarrow\:{a}\leqslant{b}\leqslant\mathrm{13} \\ $$$$\mathrm{5}\leqslant{a}\leqslant\mathrm{8}\:\Rightarrow\:{a}\leqslant{b}\leqslant\mathrm{12} \\ $$$$\mathrm{9}\leqslant{a}\leqslant\mathrm{10}\:\Rightarrow\:{a}\leqslant{b}\leqslant\mathrm{11} \\ $$

Answered by Rasheed.Sindhi last updated on 18/Sep/19

A Different Way  Can be proved that exactly one of  a,b & c is even^★  Also 1≤a,b,c≤18.  Assume that a∈E & b,c∈O  let a=2u,b=2v+1,c=2w+1   (2u)^2 +(2v+1)^2 +(2w+1)^2 =354    4u^2 +4v^2 +4v+1+4w^2 +4w+1=354    4u^2 +4v^2 +4v+4w^2 +4w=352       u^2 +v^2 +v+w^2 +w=88       u^2 +v(v+1)+w(w+1)=88      v(v+1)∈E ∧ w(w+1)∈E     ⇒u^2 ∈E⇒u∈E⇒a=2u is doubly even.  Possible values for a: 4,8,12 & 16  For a=4: c=(√(354−a^2 −b^2 ))=(√(338−b^2 ))      Possible values for b:1,3,5,...,17      Only for b=7,13 & 17; c∈Z^+       Successful triplets:4,7,17 & 4,13,13  For a=8:c=(√(354−a^2 −b^2 ))=(√(290−b^2 ))       Possible values for b:1,3,5,...,17      Only for b=1,11,13 & 17; c∈Z^+        Successful triplets:8,1,17 & 8,11,13  For a=12:c=(√(354−a^2 −b^2 ))=(√(210−b^2 ))       Possible values for b:1,3,5,...,13       For no value of b;  c∈Z^+        No Successful triplets.  For a=16:c=(√(354−a^2 −b^2 ))=(√(98−b^2 ))       Possible values for b:1,3,5,...,9      Only for b=7 ; c∈Z^+        Successful triplets:16,7,7

$$\mathbb{A}\:\mathbb{D}\boldsymbol{\mathrm{ifferent}}\:\mathbb{W}\boldsymbol{\mathrm{ay}} \\ $$$$\mathrm{Can}\:\mathrm{be}\:\mathrm{proved}\:\mathrm{that}\:\mathrm{exactly}\:\boldsymbol{\mathrm{one}}\:\mathrm{of} \\ $$$$\mathrm{a},\mathrm{b}\:\&\:\mathrm{c}\:\mathrm{is}\:\mathrm{even}^{\bigstar} \:\mathrm{Also}\:\mathrm{1}\leqslant\mathrm{a},\mathrm{b},\mathrm{c}\leqslant\mathrm{18}. \\ $$$$\mathrm{Assume}\:\mathrm{that}\:\mathrm{a}\in\mathbb{E}\:\&\:\mathrm{b},\mathrm{c}\in\mathbb{O} \\ $$$$\mathrm{let}\:\mathrm{a}=\mathrm{2u},\mathrm{b}=\mathrm{2v}+\mathrm{1},\mathrm{c}=\mathrm{2w}+\mathrm{1} \\ $$$$\:\left(\mathrm{2u}\right)^{\mathrm{2}} +\left(\mathrm{2v}+\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2w}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{354} \\ $$$$\:\:\mathrm{4u}^{\mathrm{2}} +\mathrm{4v}^{\mathrm{2}} +\mathrm{4v}+\mathrm{1}+\mathrm{4w}^{\mathrm{2}} +\mathrm{4w}+\mathrm{1}=\mathrm{354} \\ $$$$\:\:\mathrm{4u}^{\mathrm{2}} +\mathrm{4v}^{\mathrm{2}} +\mathrm{4v}+\mathrm{4w}^{\mathrm{2}} +\mathrm{4w}=\mathrm{352} \\ $$$$\:\:\:\:\:\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} +\mathrm{v}+\mathrm{w}^{\mathrm{2}} +\mathrm{w}=\mathrm{88} \\ $$$$\:\:\:\:\:\mathrm{u}^{\mathrm{2}} +\mathrm{v}\left(\mathrm{v}+\mathrm{1}\right)+\mathrm{w}\left(\mathrm{w}+\mathrm{1}\right)=\mathrm{88} \\ $$$$\:\:\:\:\mathrm{v}\left(\mathrm{v}+\mathrm{1}\right)\in\mathbb{E}\:\wedge\:\mathrm{w}\left(\mathrm{w}+\mathrm{1}\right)\in\mathbb{E} \\ $$$$\:\:\:\Rightarrow\mathrm{u}^{\mathrm{2}} \in\mathbb{E}\Rightarrow\mathrm{u}\in\mathbb{E}\Rightarrow\mathrm{a}=\mathrm{2u}\:\mathrm{is}\:\mathrm{doubly}\:\mathrm{even}. \\ $$$$\mathrm{Possible}\:\mathrm{values}\:\mathrm{for}\:\mathrm{a}:\:\mathrm{4},\mathrm{8},\mathrm{12}\:\&\:\mathrm{16} \\ $$$$\mathrm{For}\:\mathrm{a}=\mathrm{4}:\:\mathrm{c}=\sqrt{\mathrm{354}−\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }=\sqrt{\mathrm{338}−\mathrm{b}^{\mathrm{2}} } \\ $$$$\:\:\:\:\mathrm{Possible}\:\mathrm{values}\:\mathrm{for}\:\mathrm{b}:\mathrm{1},\mathrm{3},\mathrm{5},...,\mathrm{17} \\ $$$$\:\:\:\:\mathrm{Only}\:\mathrm{for}\:\mathrm{b}=\mathrm{7},\mathrm{13}\:\&\:\mathrm{17};\:\mathrm{c}\in\mathbb{Z}^{+} \\ $$$$\:\:\:\:\mathrm{Successful}\:\mathrm{triplets}:\mathrm{4},\mathrm{7},\mathrm{17}\:\&\:\mathrm{4},\mathrm{13},\mathrm{13} \\ $$$$\mathrm{For}\:\mathrm{a}=\mathrm{8}:\mathrm{c}=\sqrt{\mathrm{354}−\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }=\sqrt{\mathrm{290}−\mathrm{b}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\mathrm{Possible}\:\mathrm{values}\:\mathrm{for}\:\mathrm{b}:\mathrm{1},\mathrm{3},\mathrm{5},...,\mathrm{17} \\ $$$$\:\:\:\:\mathrm{Only}\:\mathrm{for}\:\mathrm{b}=\mathrm{1},\mathrm{11},\mathrm{13}\:\&\:\mathrm{17};\:\mathrm{c}\in\mathbb{Z}^{+} \\ $$$$\:\:\:\:\:\mathrm{Successful}\:\mathrm{triplets}:\mathrm{8},\mathrm{1},\mathrm{17}\:\&\:\mathrm{8},\mathrm{11},\mathrm{13} \\ $$$$\mathrm{For}\:\mathrm{a}=\mathrm{12}:\mathrm{c}=\sqrt{\mathrm{354}−\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }=\sqrt{\mathrm{210}−\mathrm{b}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\mathrm{Possible}\:\mathrm{values}\:\mathrm{for}\:\mathrm{b}:\mathrm{1},\mathrm{3},\mathrm{5},...,\mathrm{13} \\ $$$$\:\:\:\:\:\mathrm{For}\:\boldsymbol{\mathrm{no}}\:\mathrm{value}\:\mathrm{of}\:\mathrm{b};\:\:\mathrm{c}\in\mathbb{Z}^{+} \\ $$$$\:\:\:\:\:\mathrm{No}\:\mathrm{Successful}\:\mathrm{triplets}. \\ $$$$\mathrm{For}\:\mathrm{a}=\mathrm{16}:\mathrm{c}=\sqrt{\mathrm{354}−\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }=\sqrt{\mathrm{98}−\mathrm{b}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\mathrm{Possible}\:\mathrm{values}\:\mathrm{for}\:\mathrm{b}:\mathrm{1},\mathrm{3},\mathrm{5},...,\mathrm{9} \\ $$$$\:\:\:\:\mathrm{Only}\:\mathrm{for}\:\mathrm{b}=\mathrm{7}\:;\:\mathrm{c}\in\mathbb{Z}^{+} \\ $$$$\:\:\:\:\:\mathrm{Successful}\:\mathrm{triplets}:\mathrm{16},\mathrm{7},\mathrm{7} \\ $$$$ \\ $$

Commented by Rasheed.Sindhi last updated on 14/Sep/19

^★ a^2 +b^2 +c^2 =354⇒a^2 +b^2 +c^2 ∈E   ^• a,b,c all are not odd.If they were      a^2 +b^2 +c^(2 ) be surely odd.   ^• a,b,c all are not even:If they were      a^2 +b^2 +c^(2 ) were doubly even but      it is not because it is equal to a singly       even(354)       [a^2 +b^2 +c^2 =(2u)^2 +(2v)^2 +(2w)^2          =4(u^2 +v^2 +w^2 )]   ^• Two of a,b,c can′t be even.If they       were , a^2 +b^2 +c^2  be odd due to one       odd.   ^• ∴ only one of a,b,c is even.

$$\:^{\bigstar} \mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\mathrm{354}\Rightarrow\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \in\mathbb{E} \\ $$$$\:\:^{\bullet} \mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{all}\:\mathrm{are}\:\mathrm{not}\:\mathrm{odd}.\mathrm{If}\:\mathrm{they}\:\mathrm{were} \\ $$$$\:\:\:\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}\:} \mathrm{be}\:\mathrm{surely}\:\mathrm{odd}. \\ $$$$\:\:^{\bullet} \mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{all}\:\mathrm{are}\:\mathrm{not}\:\mathrm{even}:\mathrm{If}\:\mathrm{they}\:\mathrm{were} \\ $$$$\:\:\:\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}\:} \mathrm{were}\:\mathrm{doubly}\:\mathrm{even}\:\mathrm{but} \\ $$$$\:\:\:\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{because}\:\mathrm{it}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{a}\:\mathrm{singly} \\ $$$$\:\:\:\:\:\mathrm{even}\left(\mathrm{354}\right) \\ $$$$\:\:\:\:\:\left[\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\left(\mathrm{2u}\right)^{\mathrm{2}} +\left(\mathrm{2v}\right)^{\mathrm{2}} +\left(\mathrm{2w}\right)^{\mathrm{2}} \right. \\ $$$$\left.\:\:\:\:\:\:\:=\mathrm{4}\left(\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} +\mathrm{w}^{\mathrm{2}} \right)\right] \\ $$$$\:\:^{\bullet} \mathrm{Two}\:\mathrm{of}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{even}.\mathrm{If}\:\mathrm{they} \\ $$$$\:\:\:\:\:\mathrm{were}\:,\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \:\mathrm{be}\:\mathrm{odd}\:\mathrm{due}\:\mathrm{to}\:\mathrm{one} \\ $$$$\:\:\:\:\:\mathrm{odd}. \\ $$$$\:\:^{\bullet} \therefore\:\mathrm{only}\:\mathrm{one}\:\mathrm{of}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{is}\:\mathrm{even}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com