Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 6852 by Tawakalitu. last updated on 31/Jul/16

Commented by Tawakalitu. last updated on 31/Jul/16

Please i need solution here.... to solve for x

$${Please}\:{i}\:{need}\:{solution}\:{here}....\:{to}\:{solve}\:{for}\:{x} \\ $$

Answered by Rasheed Soomro last updated on 03/Aug/16

Commented by Rasheed Soomro last updated on 05/Aug/16

By GeoGebra   x=20°  With given angles x can′t be  determined.  I think one should consider  measures of the sides in order  to determine the required angle.

$${By}\:{GeoGebra}\:\:\:{x}=\mathrm{20}° \\ $$$${With}\:{given}\:{angles}\:{x}\:{can}'{t}\:{be} \\ $$$${determined}. \\ $$$${I}\:{think}\:{one}\:{should}\:{consider} \\ $$$${measures}\:{of}\:{the}\:{sides}\:{in}\:{order} \\ $$$${to}\:{determine}\:{the}\:{required}\:{angle}. \\ $$

Answered by Rasheed Soomro last updated on 07/Aug/16

For diagram see comment below.  In △ACB           ∠CAB=10+70=80  and   ∠CBA=20+60=80  ∵   ∠CAB=∠CBA=80  ∴ AC=BC   [Opposite sides to congruent angles]  Also  ∠C=180−2×80=20  In △AFB,    ∠AFB=180−70−60=50  So,    ∠EFB=180−50=130  and in △EFB      ∠FEB=180−20−130=30    Let  AC=BC=1  In △AEC ,     AC=1,∠C=20,∠CAE=10                 So,          ∠AEC=180−20−10=150                  By Sine law                   ((CE)/(sin 10))=((AC)/(sin 150))=(1/(sin 150))                     CE=((sin 10)/(sin 150))   Similarly in △BDC,   BC=1,∠C=20,∠CBD=20 & ∠BDC=140                         ((CD)/(sin 20))=((BC)/(sin 140))=(1/(sin 140))                      CD=((sin 20)/(sin 140))    Now in △CDE,   According to Sine law                       ((CE)/(sin (160−y)))=((CD)/(sin y))                      ((sin (160−y))/(sin y))=((CE)/(CD))=((sin 10)/(sin 150))/((sin 20)/(sin 140))                      ((sin 160 cos y−cos 160 sin y)/(sin y))=((sin 10 sin 140)/(sin 20sin 150))                    sin 160 cot y=((sin 10 sin 140)/(sin 20sin 150))+cos 160                                              =((sin 10 sin 140+sin 20sin 150cos 160)/(sin 20sin 150))                     cot y=((sin 10 sin 140+sin 20sin 150cos 160)/(sin 20sin 150sin 160))                     tan y=((sin 20sin 150sin 160)/(sin 10 sin 140+sin 20 sin 150 cos 160))                     y=tan^(−1) (((sin 20sin 150sin 160)/(sin 10 sin 140+sin 20 sin 150 cos 160)))=130 (If 0<y<180)                                                                       [With the help of  calculator]         x=180−y−30=150−130=20

$${For}\:{diagram}\:{see}\:{comment}\:{below}. \\ $$$${In}\:\bigtriangleup{ACB}\:\:\:\:\: \\ $$$$\:\:\:\:\angle{CAB}=\mathrm{10}+\mathrm{70}=\mathrm{80}\:\:{and}\:\:\:\angle{CBA}=\mathrm{20}+\mathrm{60}=\mathrm{80} \\ $$$$\because\:\:\:\angle{CAB}=\angle{CBA}=\mathrm{80} \\ $$$$\therefore\:{AC}={BC}\:\:\:\left[{Opposite}\:{sides}\:{to}\:{congruent}\:{angles}\right] \\ $$$${Also}\:\:\angle{C}=\mathrm{180}−\mathrm{2}×\mathrm{80}=\mathrm{20} \\ $$$${In}\:\bigtriangleup{AFB},\:\:\:\:\angle{AFB}=\mathrm{180}−\mathrm{70}−\mathrm{60}=\mathrm{50} \\ $$$${So},\:\:\:\:\angle{EFB}=\mathrm{180}−\mathrm{50}=\mathrm{130} \\ $$$${and}\:{in}\:\bigtriangleup{EFB}\:\:\:\:\:\:\angle{FEB}=\mathrm{180}−\mathrm{20}−\mathrm{130}=\mathrm{30} \\ $$$$ \\ $$$${Let}\:\:{AC}={BC}=\mathrm{1} \\ $$$${In}\:\bigtriangleup{AEC}\:,\:\:\:\:\:{AC}=\mathrm{1},\angle{C}=\mathrm{20},\angle{CAE}=\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{So},\:\:\:\:\:\:\:\:\:\:\angle{AEC}=\mathrm{180}−\mathrm{20}−\mathrm{10}=\mathrm{150} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{By}\:{Sine}\:{law} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{CE}}{\mathrm{sin}\:\mathrm{10}}=\frac{{AC}}{\mathrm{sin}\:\mathrm{150}}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{150}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{CE}=\frac{\mathrm{sin}\:\mathrm{10}}{\mathrm{sin}\:\mathrm{150}} \\ $$$$\:{Similarly}\:{in}\:\bigtriangleup{BDC},\:\:\:{BC}=\mathrm{1},\angle{C}=\mathrm{20},\angle{CBD}=\mathrm{20}\:\&\:\angle{BDC}=\mathrm{140} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{CD}}{\mathrm{sin}\:\mathrm{20}}=\frac{{BC}}{\mathrm{sin}\:\mathrm{140}}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{140}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{CD}=\frac{\mathrm{sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{140}} \\ $$$$ \\ $$$${Now}\:{in}\:\bigtriangleup{CDE},\:\:\:{According}\:{to}\:{Sine}\:{law} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{CE}}{\mathrm{sin}\:\left(\mathrm{160}−{y}\right)}=\frac{{CD}}{\mathrm{sin}\:{y}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{sin}\:\left(\mathrm{160}−{y}\right)}{\mathrm{sin}\:{y}}=\frac{{CE}}{{CD}}=\frac{\mathrm{sin}\:\mathrm{10}}{\mathrm{sin}\:\mathrm{150}}/\frac{\mathrm{sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{140}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{sin}\:\mathrm{160}\:\mathrm{cos}\:{y}−\mathrm{cos}\:\mathrm{160}\:\mathrm{sin}\:{y}}{\mathrm{sin}\:{y}}=\frac{\mathrm{sin}\:\mathrm{10}\:\mathrm{sin}\:\mathrm{140}}{\mathrm{sin}\:\mathrm{20sin}\:\mathrm{150}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\:\mathrm{160}\:\mathrm{cot}\:{y}=\frac{\mathrm{sin}\:\mathrm{10}\:\mathrm{sin}\:\mathrm{140}}{\mathrm{sin}\:\mathrm{20sin}\:\mathrm{150}}+\mathrm{cos}\:\mathrm{160} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{sin}\:\mathrm{10}\:\mathrm{sin}\:\mathrm{140}+\mathrm{sin}\:\mathrm{20sin}\:\mathrm{150cos}\:\mathrm{160}}{\mathrm{sin}\:\mathrm{20sin}\:\mathrm{150}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cot}\:{y}=\frac{\mathrm{sin}\:\mathrm{10}\:\mathrm{sin}\:\mathrm{140}+\mathrm{sin}\:\mathrm{20sin}\:\mathrm{150cos}\:\mathrm{160}}{\mathrm{sin}\:\mathrm{20sin}\:\mathrm{150sin}\:\mathrm{160}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{tan}\:{y}=\frac{\mathrm{sin}\:\mathrm{20sin}\:\mathrm{150sin}\:\mathrm{160}}{\mathrm{sin}\:\mathrm{10}\:\mathrm{sin}\:\mathrm{140}+\mathrm{sin}\:\mathrm{20}\:\mathrm{sin}\:\mathrm{150}\:\mathrm{cos}\:\mathrm{160}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\:\mathrm{20sin}\:\mathrm{150sin}\:\mathrm{160}}{\mathrm{sin}\:\mathrm{10}\:\mathrm{sin}\:\mathrm{140}+\mathrm{sin}\:\mathrm{20}\:\mathrm{sin}\:\mathrm{150}\:\mathrm{cos}\:\mathrm{160}}\right)=\mathrm{130}\:\left({If}\:\mathrm{0}<{y}<\mathrm{180}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{With}\:{the}\:{help}\:{of}\:\:{calculator}\right] \\ $$$$\:\:\:\:\:\:\:{x}=\mathrm{180}−{y}−\mathrm{30}=\mathrm{150}−\mathrm{130}=\mathrm{20} \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 05/Aug/16

Commented by Tawakalitu. last updated on 20/Aug/16

Wow, thanks so much. i did not see it before. I really appreciate  . Thanks again.

$${Wow},\:{thanks}\:{so}\:{much}.\:{i}\:{did}\:{not}\:{see}\:{it}\:{before}.\:{I}\:{really}\:{appreciate} \\ $$$$.\:{Thanks}\:{again}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com