Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 68510 by oyemi kemewari last updated on 12/Sep/19

Answered by mr W last updated on 14/Sep/19

v=(√(2gh))  base area of tanks=A=1 ft^2   A(dh/2)=−((πd^2 )/4)vdt  dh=−((πd^2 (√(2gh)))/(2A))dt  (dh/(√h))=−((πd^2 (√(2g)))/(2A))dt  ∫_h_0  ^h (dh/(√h))=−((πd^2 (√(2g)))/(2A))∫_0 ^t dt  2[(√h)−(√h_0 )]=−((πd^2 (√(2g)))/(2A))t  (√h_0 )−(√h)=((πd^2 (√(2g)))/(4A))t  ⇒t=((4A((√h_0 )−(√h)))/(πd^2 (√(2g))))  h_0 =1 ft  d=0.5 in=(1/(24)) ft    for h=0.25 ft:  t=((4×1((√1)−(√(0.25))))/(π((1/(24)))^2 (√(2g))))=82 seconds    for h=0:  t=((4×1((√1)−(√0)))/(π((1/(24)))^2 (√(2g))))=164 seconds

$${v}=\sqrt{\mathrm{2}{gh}} \\ $$$${base}\:{area}\:{of}\:{tanks}={A}=\mathrm{1}\:{ft}^{\mathrm{2}} \\ $$$${A}\frac{{dh}}{\mathrm{2}}=−\frac{\pi{d}^{\mathrm{2}} }{\mathrm{4}}{vdt} \\ $$$${dh}=−\frac{\pi{d}^{\mathrm{2}} \sqrt{\mathrm{2}{gh}}}{\mathrm{2}{A}}{dt} \\ $$$$\frac{{dh}}{\sqrt{{h}}}=−\frac{\pi{d}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{\mathrm{2}{A}}{dt} \\ $$$$\int_{{h}_{\mathrm{0}} } ^{{h}} \frac{{dh}}{\sqrt{{h}}}=−\frac{\pi{d}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{\mathrm{2}{A}}\int_{\mathrm{0}} ^{{t}} {dt} \\ $$$$\mathrm{2}\left[\sqrt{{h}}−\sqrt{{h}_{\mathrm{0}} }\right]=−\frac{\pi{d}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{\mathrm{2}{A}}{t} \\ $$$$\sqrt{{h}_{\mathrm{0}} }−\sqrt{{h}}=\frac{\pi{d}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{\mathrm{4}{A}}{t} \\ $$$$\Rightarrow{t}=\frac{\mathrm{4}{A}\left(\sqrt{{h}_{\mathrm{0}} }−\sqrt{{h}}\right)}{\pi{d}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}} \\ $$$${h}_{\mathrm{0}} =\mathrm{1}\:{ft} \\ $$$${d}=\mathrm{0}.\mathrm{5}\:{in}=\frac{\mathrm{1}}{\mathrm{24}}\:{ft} \\ $$$$ \\ $$$${for}\:{h}=\mathrm{0}.\mathrm{25}\:{ft}: \\ $$$${t}=\frac{\mathrm{4}×\mathrm{1}\left(\sqrt{\mathrm{1}}−\sqrt{\mathrm{0}.\mathrm{25}}\right)}{\pi\left(\frac{\mathrm{1}}{\mathrm{24}}\right)^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}=\mathrm{82}\:{seconds} \\ $$$$ \\ $$$${for}\:{h}=\mathrm{0}: \\ $$$${t}=\frac{\mathrm{4}×\mathrm{1}\left(\sqrt{\mathrm{1}}−\sqrt{\mathrm{0}}\right)}{\pi\left(\frac{\mathrm{1}}{\mathrm{24}}\right)^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}=\mathrm{164}\:{seconds} \\ $$

Commented by mr W last updated on 14/Sep/19

Commented by oyemi kemewari last updated on 17/Sep/19

$$ \\ $$

Commented by oyemi kemewari last updated on 28/Sep/19

thank you sir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com